OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10475–10482

Flexible transformation plasmonics using graphene

Wei Bing Lu, Wei Zhu, Hong Ju Xu, Zhen Hua Ni, Zheng Gao Dong, and Tie Jun Cui  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10475-10482 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3059 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The flexible control of surface plasmon polaritons (SPPs) is important and intriguing due to its wide application in novel plasmonic devices. Transformation optics (TO) offers the capability either to confine the SPP propagation on rigid curved/uneven surfaces, or to control the flow of SPPs on planar surfaces. However, TO has not permitted us to confine, manipulate, and control SPP waves on flexible curved surfaces. Here, we propose to confine and freely control flexible SPPs using TO and graphene. We show that SPP waves can be naturally confined and propagate on curved or uneven graphene surfaces with little bending and radiation losses, and the confined SPPs are further manipulated and controlled using TO. Flexible plasmonic devices are presented, including the bending waveguides, wave splitter, and Luneburg lens on curved surfaces. Together with the intrinsic flexibility, graphene can be served as a good platform for flexible transformation plasmonics.

© 2013 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

Original Manuscript: March 12, 2013
Revised Manuscript: April 10, 2013
Manuscript Accepted: April 15, 2013
Published: April 22, 2013

Wei Bing Lu, Wei Zhu, Hong Ju Xu, Zhen Hua Ni, Zheng Gao Dong, and Tie Jun Cui, "Flexible transformation plasmonics using graphene," Opt. Express 21, 10475-10482 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Falco, M. Ploschner, T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010). [CrossRef]
  2. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23(38), 4422–4430 (2011). [CrossRef] [PubMed]
  3. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010). [CrossRef] [PubMed]
  4. G. X. Li, S. M. Chen, W. H. Wong, E. Y. B. Pun, K. W. Cheah, “Highly flexible near-infrared metamaterials,” Opt. Express 20(1), 397–402 (2012). [CrossRef] [PubMed]
  5. O. Vazquez-Mena, T. Sannomiya, M. Tosun, L. G. Villanueva, V. Savu, J. Voros, J. Brugger, “High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks,” ACS Nano 6(6), 5474–5481 (2012). [CrossRef] [PubMed]
  6. Y. Liu, T. Zentgraf, G. Bartal, X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010). [CrossRef] [PubMed]
  7. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  8. D. Kwon, D. H. Werner, “Transformation electromagnetic: an overview of the theory and applications,” IEEE Trans. Antennas Propag. 52(1), 24–46 (2010). [CrossRef]
  9. N. B. Kundtz, D. R. Smith, J. B. Pendry, “Electromagnetic design with transformation optics,” Proc. IEEE 99(10), 1622–1633 (2011). [CrossRef]
  10. J. B. Pendry, A. Aubry, D. R. Smith, S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012). [CrossRef] [PubMed]
  11. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  12. W. X. Jiang, J. Y. Chin, T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12(12), 26–33 (2009). [CrossRef]
  13. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef] [PubMed]
  14. Y. G. Ma, C. K. Ong, T. Tyc, U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8(8), 639–642 (2009). [CrossRef] [PubMed]
  15. N. Kundtz, D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010). [CrossRef] [PubMed]
  16. H. F. Ma, T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat Commun 1(8), 124 (2010). [CrossRef] [PubMed]
  17. D. A. Genov, S. Zhang, X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009). [CrossRef]
  18. Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010). [CrossRef]
  19. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10(6), 1985–1990 (2010). [CrossRef] [PubMed]
  20. M. Kadic, S. Guenneau, S. Enoch, “Transformational plasmonics: cloak, concentrator and rotator for SPPs,” Opt. Express 18(11), 12027–12032 (2010). [CrossRef] [PubMed]
  21. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappings,” New J. Phys. 13(3), 033011 (2011). [CrossRef]
  22. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, X. Zhang, “Plasmonic Luneburg and eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011). [CrossRef] [PubMed]
  23. M. Kadic, S. Guenneau, S. Enoch, P. A. Huidobro, L. Martín-Moreno, F. García-Vidal, J. Renger, R. Quidant, “Transformation plasmonics,” Nanophotonic 1, 51–64 (2012).
  24. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012). [PubMed]
  25. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012). [PubMed]
  26. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  27. H. J. Xu, W. B. Lu, Y. Jiang, Z. G. Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett. 100(5), 051903 (2012). [CrossRef]
  28. H. J. Xu, W. B. Lu, W. Zhu, Z. G. Dong, T. J. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012). [CrossRef]
  29. D. K. Efetov, P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105(25), 256805 (2010). [CrossRef] [PubMed]
  30. C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011). [CrossRef] [PubMed]
  31. W. Chen, S. Chen, D. C. Qi, X. Y. Gao, A. T. S. Wee, “Surface transfer p-type doping of epitaxial graphene,” J. Am. Chem. Soc. 129(34), 10418–10422 (2007). [CrossRef] [PubMed]
  32. D. R. Andersen, “Graphene-based long-wave infrared TM surface plasmon modulator,” J. Opt. Soc. Am. B 27(4), 818–822 (2010). [CrossRef]
  33. P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012). [CrossRef]
  34. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008). [CrossRef]
  35. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012). [CrossRef] [PubMed]
  36. H. Raether, Surface Plasmons: On Smooth and Rough Surfaces and on Gratings; Springer: Berlin, 1998.
  37. P. Y. Chen, A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011). [CrossRef] [PubMed]
  38. K. Hasegawa, J. U. Nockel, M. Deutsch, “Curvature-induced radiation of surface plasmon polaritons propagating around bends,” Phys. Rev. A 75(6), 063816 (2007). [CrossRef]
  39. M. Faddaoui, A. Folacci, P. Gabrielli, “Surface polaritons of a left-handed curved slab,” http://arxiv.org/abs/1007.1337 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited