OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10483–10489

Electrically pumped random lasing from FTO/porous insulator/n-ZnO/p+-Si devices

Yanjun Fang, Yewu Wang, Xi Ding, Ren Lu, Lin Gu, and Jian Sha  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10483-10489 (2013)
http://dx.doi.org/10.1364/OE.21.010483


View Full Text Article

Enhanced HTML    Acrobat PDF (1615 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electrically pumped random lasing (RL) has been realized in FTO/porous insulator/n-ZnO/p+-Si devices. It is demonstrated that RL originates from the confining and recurrent scattering of light in the random cavities within the insulating layer, which are formed due to the glow discharge. The glow discharge also induces the observed negative differential resistance (NDR) effect following the normal I-V characteristics. The results present a new strategy to realize electrically pumped RL in ZnO-based metal-insulator-semiconductor device by simply modifying the morphology of the insulating layer.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.2090) Optical devices : Electro-optical devices
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 13, 2013
Revised Manuscript: April 15, 2013
Manuscript Accepted: April 15, 2013
Published: April 22, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Yanjun Fang, Yewu Wang, Xi Ding, Ren Lu, Lin Gu, and Jian Sha, "Electrically pumped random lasing from FTO/porous insulator/n-ZnO/p+-Si devices," Opt. Express 21, 10483-10489 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10483


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998). [CrossRef] [PubMed]
  2. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  3. K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012). [CrossRef]
  4. H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010). [CrossRef] [PubMed]
  5. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998). [CrossRef]
  6. S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett.84(17), 3244–3246 (2004). [CrossRef]
  7. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241–3243 (2004). [CrossRef]
  8. E. S. P. Leong and S. F. Yu, “UV random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes,” Adv. Mater.18(13), 1685–1688 (2006). [CrossRef]
  9. X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007). [CrossRef]
  10. Y. Tian, X. Ma, L. Jin, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO films: Compensation between optical gain and light scattering,” Appl. Phys. Lett.97(25), 251115 (2010). [CrossRef]
  11. P. Chen, X. Ma, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: Dependence on carrier transport,” Opt. Express17(6), 4712–4717 (2009). [CrossRef] [PubMed]
  12. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006). [CrossRef] [PubMed]
  13. H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011). [CrossRef] [PubMed]
  14. Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. A. Sha, “Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010). [CrossRef]
  15. S. W. Lee, H. D. Cho, G. Panin, and T. W. Kang, “Vertical ZnO nanorod/Si contact light-emitting diode,” Appl. Phys. Lett.98(9), 093110 (2011). [CrossRef]
  16. O. Lupan, T. Pauporté, and B. Viana, “Low-temperature growth of ZnO nanowire arrays on p-Silicon (111) for visible-light-emitting diode fabrication,” J. Phys. Chem. C114(35), 14781–14785 (2010). [CrossRef]
  17. S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Appl. Phys. Lett.84(2), 188–190 (2004). [CrossRef]
  18. P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett.89(11), 111112 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited