OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10490–10495

Efficient Raman frequency conversion by coherent feedback at low light intensity

Bing Chen, Kai Zhang, Chengling Bian, Cheng Qiu, Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, and Weiping Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10490-10495 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate efficient Raman conversion to respective Stokes and anti-Stokes fields in both pulsed and continuous modes with a Rb-87 atomic vapor cell. The conversion efficiency is about 40-50% for the Stokes field and 20-30% for the anti-Stokes field, respectively. This efficient conversion process is realized with coherent feedback of both the Raman pump and the frequency-converted fields (Stokes or anti-Stokes). The experimental setup is simple and can be applied easily to produce light sources with larger frequency shifts using other Raman media with long coherence time. They may have potential applications in nonlinear optics, Raman spectroscopy and precision measurement.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(270.0270) Quantum optics : Quantum optics
(290.5860) Scattering : Scattering, Raman
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: March 14, 2013
Revised Manuscript: April 15, 2013
Manuscript Accepted: April 16, 2013
Published: April 22, 2013

Bing Chen, Kai Zhang, Chengling Bian, Cheng Qiu, Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, and Weiping Zhang, "Efficient Raman frequency conversion by coherent feedback at low light intensity," Opt. Express 21, 10490-10495 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Sasic and S. Ekins, Pharmaceutical applications of Raman spectroscopy (John Wiley and Sons, Hoboken, New Jersey, 2008).
  2. K.-C. Chou, “Low-frequency collective motion in biomacromolecules and its biological functions,” Biophys. Chem.30(1), 3–48 (1988). [CrossRef] [PubMed]
  3. H. Urabe, Y. Tominaga, and K. Kubota, “Experimental evidence of collective vibrations in DNA double helix Raman spectroscopy,” J. Chem. Phys.78(10), 5937–5939 (1983). [CrossRef]
  4. K. C. Chou, “Identification of low-frequency modes in protein molecules,” Biochem. J.215(3), 465–469 (1983). [PubMed]
  5. Y. S. Huh, A. J. Chung, and D. Erickson, “Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis,” Microfluid. Nanofluid.6(3), 285–297 (2009). [CrossRef]
  6. R. K. Khanna, “Raman-spectroscopy of oligomeric SiO species isolated in solid methane,” J. Chem. Phys.74, 2108 (1981). [CrossRef]
  7. R. L. Schwiesow and V. E. Derr, “A Raman scattering method for precise measurement of atmospheric oxygen balance,” J. Geophys. Res.75(9), 1629–1632 (1970). [CrossRef]
  8. A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia38(1), 25–61 (2001). [CrossRef]
  9. T. Müller, G. Grunefeld, and V. Beushausen, “High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering,” Appl. Phys. B70(1), 155–158 (2000). [CrossRef]
  10. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett.89(6), 067901 (2002). [CrossRef] [PubMed]
  11. S. Brattke, B. T. H. Varcoe, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett.86(16), 3534–3537 (2001). [CrossRef] [PubMed]
  12. X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, “Quantum memory with a single photon in a cavity,” Phys. Rev. Lett.79(4), 769–772 (1997). [CrossRef]
  13. M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A32(1), 332–344 (1985). [CrossRef] [PubMed]
  14. O. S. Mishina, N. V. Larionov, A. S. Sheremet, I. M. Sokolov, and D. V. Kupriyanov, “Stimulated Raman process in a scattering medium applied to the quantum memory scheme,” Phys. Rev. A78(4), 042313 (2008). [CrossRef]
  15. R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti ‐ Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974). [CrossRef]
  16. A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectros.31(8-9), 653–667 (2000). [CrossRef]
  17. E. J. Blackie, E. C. Le Ru, and P. G. Etchegoin, “Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules,” J. Am. Chem. Soc.131(40), 14466–14472 (2009). [CrossRef] [PubMed]
  18. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced. Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  19. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B110(4), 1944–1948 (2006). [CrossRef] [PubMed]
  20. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77(21), 4326–4329 (1996). [CrossRef] [PubMed]
  21. A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient nonlinear frequency conversion in an all-resonant double- lambda system,” Phys. Rev. Lett.84(23), 5308–5311 (2000). [CrossRef] [PubMed]
  22. K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  23. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997). [CrossRef]
  24. L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett.95(4), 041115 (2009). [CrossRef]
  25. C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A82(1), 013817 (2010). [CrossRef]
  26. M. Fleischhauer, M. D. Lukin, A. B. Matsko, and M. O. Scully, “Threshold and linewidth of a mirrorless parametric oscillator,” Phys. Rev. Lett.84(16), 3558–3561 (2000). [CrossRef] [PubMed]
  27. A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett.83(20), 4049–4052 (1999). [CrossRef]
  28. M. L. Berre, E. Ressayre, and A. Tallet, “Self-oscillations of the mirrorlike sodium vapor driven by counterpropagating light beams,” Phys. Rev. A43, 6345 (1991).
  29. M. L. Berre, E. Ressayre, and A. Tallet, “Physics in counterpropagating light-beam devices: Phase-conjugation and gain concepts in multiwave mixing,” Phys. Rev. A44, 5958 (1991).
  30. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24(4), 1980–1993 (1981). [CrossRef]
  31. C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science301(5630), 196–200 (2003). [CrossRef] [PubMed]
  32. C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett.97(3), 34005 (2012). [CrossRef]
  33. C.-H. Yuan, L. Q. Chen, Z. Y. Ou, and W. Zhang, “Entanglement enhanced phase sensitive Raman scattering in atomic vapors”, arXiv:1211.6540.
  34. I. Novikova, Y. Xiao, D. F. Phillips, and R. L. Walsworth, “EIT and diffusion of atomic coherence,” J. Mod. Opt.52(16), 2381–2390 (2005). [CrossRef]
  35. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett.67(2), 181–184 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited