OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10502–10510

Wide-angle near infrared polarizer with extremely high extinction ratio

X. L. Liu, B. Zhao, and Z. M. Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10502-10510 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An infrared polarizer is designed with a predicted extremely high extinction ratio exceeding 3 × 1016 and transmittance higher than 89% for one polarization in the wavelength region from 1.6 to 2.3 µm. Moreover, the performance does not start to deteriorate until 60° tilting angle. The wide-angle high transmission is attributed to the excitation of magnetic polaritons and suitable LC circuit models, which could predict the resonance wavelengths quantitatively, are developed to better understand the underlying mechanisms. The proposed structure can be tuned by controlling the geometrical parameters for different potential applications such as polarizers, beamsplitters, filters, and transparent electrodes.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.5440) Optical devices : Polarization-selective devices
(240.5420) Optics at surfaces : Polaritons

ToC Category:
Optical Devices

Original Manuscript: March 6, 2013
Revised Manuscript: April 13, 2013
Manuscript Accepted: April 14, 2013
Published: April 23, 2013

X. L. Liu, B. Zhao, and Z. M. Zhang, "Wide-angle near infrared polarizer with extremely high extinction ratio," Opt. Express 21, 10502-10510 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. T. Pang, G. W. Meng, Q. Fang, and L. D. Zhang, “Silver nanowire array infrared polarizers,” Nanotechnology14(1), 20–24 (2003). [CrossRef]
  2. L. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett.30(12), 1434–1436 (2005). [CrossRef] [PubMed]
  3. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slit arrays,” J. Heat Transf.- Trans. ASME 130(8), 082404 (2008). [CrossRef]
  4. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express14(6), 2323–2334 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-14-6-2323 . [CrossRef] [PubMed]
  5. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16(9), 1874–1877 (2005). [CrossRef]
  6. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett.90(6), 063111 (2007). [CrossRef]
  7. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B71(16), 165408 (2005). [CrossRef]
  8. C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B78(7), 075406 (2008). [CrossRef]
  9. L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B27(12), 2595–2604 (2010). [CrossRef]
  10. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett.31(4), 516–518 (2006). [CrossRef] [PubMed]
  11. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express15(15), 9510–9519 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-15-9510 . [CrossRef] [PubMed]
  12. J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Ultra-high extinction ratio micropolarizers using plasmonic lenses,” Opt. Express19(19), 18072–18079 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-19-18072 . [CrossRef] [PubMed]
  13. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci.5, 201–213 (2008).
  14. M. F. Modest, Radiative Heat Transfer, 2nd Ed. (Academic Press, 2003).
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, 1998).
  16. Z. M. Zhang, T. R. Gentile, A. L. Migdall, and R. U. Datla, “Transmittance measurements for filters of optical density between one and ten,” Appl. Opt.36(34), 8889–8895 (1997). [CrossRef] [PubMed]
  17. G. Kang, Y. Fang, I. Vartiainen, Q. Tan, and Y. Wang, “Achromatic polarization splitting effect of metallic gratings with sub-50 nm wide slits,” Appl. Phys. Lett.101(21), 211104 (2012). [CrossRef]
  18. W.-D. Li, J. Hu, and S. Y. Chou, “Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks,” Opt. Express19(21), 21098–21108 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-21-21098 . [CrossRef] [PubMed]
  19. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012). [CrossRef] [PubMed]
  20. S. Xie, H. Li, S. Fu, H. Xu, X. Zhou, and Z. Liu, “The extraordinary optical transmission through double-layer gold slit arrays,” Opt. Commun.283(20), 4017–4024 (2010). [CrossRef]
  21. Z. Ye, Y. Peng, T. Zhai, Y. Zhou, and D. Liu, “Surface plasmon-mediated transmission in double-layer metallic grating polarizers,” J. Opt. Soc. Am. B28(3), 502–507 (2011). [CrossRef]
  22. L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett.101(1), 011101 (2012). [CrossRef]
  23. X.-R. Huang and R.-W. Peng, “General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference,” J. Opt. Soc. Am. A27(4), 718–729 (2010). [CrossRef] [PubMed]
  24. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett.100(6), 063902 (2012). [CrossRef]
  25. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  26. B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer (submitted to) (2013).
  27. Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett.34(1), 16–18 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited