OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10597–10605

Dynamics of short-pulse generation via spectral filtering from intensely excited gain-switched 1.55-μm distributed-feedback laser diodes

Shaoqiang Chen, Masahiro Yoshita, Aya Sato, Takashi Ito, Hidefumi Akiyama, and Hiroyuki Yokoyama  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10597-10605 (2013)
http://dx.doi.org/10.1364/OE.21.010597


View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Picosecond-pulse-generation dynamics and pulse-width limiting factors via spectral filtering from intensely pulse-excited gain-switched 1.55-μm distributed-feedback laser diodes were studied. The spectral and temporal characteristics of the spectrally filtered pulses indicated that the short-wavelength component stems from the initial part of the gain-switched main pulse and has a nearly linear down-chirp of 5.2 ps/nm, whereas long-wavelength components include chirped pulse-lasing components and steady-state-lasing components. Rate-equation calculations with a model of linear change in refractive index with carrier density explained the major features of the experimental results. The analysis of the expected pulse widths with optimum spectral widths was also consistent with the experimental data.

© 2013 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.1590) Ultrafast optics : Chirping
(320.5550) Ultrafast optics : Pulses

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 19, 2012
Revised Manuscript: February 23, 2013
Manuscript Accepted: April 18, 2013
Published: April 23, 2013

Citation
Shaoqiang Chen, Masahiro Yoshita, Aya Sato, Takashi Ito, Hidefumi Akiyama, and Hiroyuki Yokoyama, "Dynamics of short-pulse generation via spectral filtering from intensely excited gain-switched 1.55-μm distributed-feedback laser diodes," Opt. Express 21, 10597-10605 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10597


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. L. Liu, C. Lin, I. Kaminow, and J. Hsieh, “Picosecond pulse generation from InGaAsP lasers at 1.25 and 1.3 µm by electrical pulse pumping,” IEEE J. Quantum Electron.17(5), 671–674 (1981). [CrossRef]
  2. Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett.9(8), 1087–1089 (1997). [CrossRef]
  3. S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev.100(5), 1777–1788 (2000). [CrossRef] [PubMed]
  4. H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express14(8), 3467–3471 (2006). [CrossRef] [PubMed]
  5. A. Sato, S. Kono, K. Saito, K. Sato, and H. Yokoyama, “A high-peak-power UV picosecond-pulse light source based on a gain-switched 1.55 microm laser diode and its application to time-resolved spectroscopy of blue-violet materials,” Opt. Express18(3), 2522–2527 (2010). [CrossRef] [PubMed]
  6. D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwaves. Optoelectronics1, 46–63 (1997).
  7. J. M. Wiesenfeld and J. Stone, “Picosecond pulse generation in optically pumped ultra-short cavity, InGaAsP, InP, and InGaAs film lasers,” IEEE J. Quantum Electron.22(1), 119–132 (1986). [CrossRef]
  8. T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett.48(10), 613–615 (1986). [CrossRef]
  9. S. Q. Chen, A. Sato, T. Ito, M. Yoshita, H. Akiyama, and H. Yokoyama, “Sub-5-ps optical pulse generation from a 1.55-µm distributed-feedback laser diode with nanosecond electric pulse excitation and spectral filtering,” Opt. Express20(22), 24843–24849 (2012). [CrossRef] [PubMed]
  10. A. Takada, T. Sugie, and M. Saruwatari, “Transform-limited 5.6 ps optical pulse generation at 12 GHz repetition rate from gain-switched distributed feedback laser diode by employing pulse compression technique,” Electron. Lett.22(25), 1347–1348 (1986). [CrossRef]
  11. K. A. Ahmed, H. F. Liu, N. Onodera, P. Lee, R. S. Tucker, and Y. Ogawa, “Nearly transform-limited pulse (3.6 ps) generation from gain-switched 1.55-μm distributed feedback laser by using fiber compression technique,” Electron. Lett.29(1), 54–56 (1993). [CrossRef]
  12. R. Takahashi, H. F. Liu, M. Osinski, and T. Kamiya, “Picosecond single-mode pulse compression using a 1.3-μm Fabry-Perot laser diode, a dispersion-shifted fiber, a grating monochromator,” Appl. Phys. Lett.55(23), 2377–2379 (1989). [CrossRef]
  13. K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, and F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry-Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photon. Technol. Lett.7(2), 158–160 (1995). [CrossRef]
  14. L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Characterization of 1.55-μm pulses from a self-seeded gain-switched Fabry-Perot laser diode using frequency-resolved optical gating,” IEEE Photon. Technol. Lett.10(7), 935–937 (1998). [CrossRef]
  15. M. Nakazawa, K. Suzuki, and Y. Kimura, “Transform-limited pulse generation in the gigahertz region from a gain-switched distributed-feedback laser diode using spectral windowing,” Opt. Lett.15(12), 715–717 (1990). [CrossRef] [PubMed]
  16. N. Yamada and Y. Nakagawa, “Pulse shaping using spectral filtering in gain-switched quantum well laser diodes,” Appl. Phys. Lett.63(5), 583–585 (1993). [CrossRef]
  17. K. Wada, S. Takamatsu, H. Watanebe, T. Matsuyama, and H. Horinaka, “Pulse-shaping of gain-switched pulse from multimode laser diode using fiber Sagnac interferometer,” Opt. Express16(24), 19872–19881 (2008). [CrossRef] [PubMed]
  18. A. Consoli and I. Esquivias, “Pulse shortening of gain switched single mode semiconductor lasers using a variable delay interferometer,” Opt. Express20(20), 22481–22489 (2012). [CrossRef] [PubMed]
  19. M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express15(25), 16292–16301 (2007). [CrossRef] [PubMed]
  20. M. S. Tahvili, L. Du, M. J. R. Heck, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers,” Opt. Express20(7), 8117–8135 (2012). [CrossRef] [PubMed]
  21. A. Consoli, J. M. G. Tijero, and I. Esquivias, “Time resolved chirp measurements of gain switched semiconductor laser using a polarization based optical differentiator,” Opt. Express19(11), 10805–10812 (2011). [CrossRef] [PubMed]
  22. S. Q. Chen, M. Yoshita, T. Ito, T. Mochizuki, H. Akiyama, H. Yokoyama, K. Kamide, and T. Ogawa, “Analysis of gain-switching characteristics including strong gain saturation effects in low-dimensional semiconductor lasers,” Jpn. J. Appl. Phys.51, 098001–098002 (2012). [CrossRef]
  23. S. Q. Chen, M. Yoshita, T. Ito, T. Mochizuki, H. Akiyama, and H. Yokoyama, “Gain-switched pulses from InGaAs ridge-quantum-well lasers limited by intrinsic dynamical gain suppression,” Opt. Express21(6), 7570–7576 (2013). [CrossRef] [PubMed]
  24. S. Q. Chen, M. Okano, B. P. Zhang, M. Yoshita, H. Akiyama, and Y. Kanemitsu, “Blue 6-ps short-pulse generation in gain-switched InGaN vertical-cavity-surface-emitting lasers via impulsive optical pumping,” Appl. Phys. Lett.101(19), 191108 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited