OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10632–10641

Detection of ion micromotion in a linear Paul trap with a high finesse cavity

Boon Leng Chuah, Nicholas C. Lewty, Radu Cazan, and Murray D. Barrett  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10632-10641 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate minimization of ion micromotion in a linear Paul trap with the use of a high finesse cavity. The excess ion micromotion projected along the optical cavity axis or along the laser propagation direction manifests itself as sideband peaks around the carrier in the ion-cavity emission spectrum. By minimizing the sideband height in the emission spectrum, we are able to reduce the micromotion amplitude along two directions to approximately the spread of the ground state wave function. This method is useful for cavity QED experiments as it describes the possibility of efficient 3-D micromotion compensation despite optical access limitations imposed by the cavity mirrors. We also show that, in principle, sub-nanometer micromotion compensation is achievable with our current system.

© 2013 OSA

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: March 4, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 15, 2013
Published: April 24, 2013

Boon Leng Chuah, Nicholas C. Lewty, Radu Cazan, and Murray D. Barrett, "Detection of ion micromotion in a linear Paul trap with a high finesse cavity," Opt. Express 21, 10632-10641 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+and Hg+single-ion optical clocks; metrology at the 17th decimal place,” Science319, 1808–1812 (2008). [CrossRef] [PubMed]
  2. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+optical clocks,” Phys. Rev. Lett.104, 070802 (2010). [CrossRef] [PubMed]
  3. D. Wineland, C. Monroe, W. Itano, D. Leibfried, B. King, and D. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.103, 259 (1998). [CrossRef]
  4. J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, “Complete methods set for scalable ion trap quantum information processing,” Science325, 1227–1230 (2009). [CrossRef] [PubMed]
  5. D. Wineland and D. Leibfried, “Quantum information processing and metrology with trapped ions,” Laser Phys. Lett.8, 175–188 (2011). [CrossRef]
  6. L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Mod. Phys.82, 1209–1224 (2010). [CrossRef]
  7. J. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett.74, 4091–4094 (1995). [CrossRef] [PubMed]
  8. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. Lancaster, T. Deuschle, C. Becher, C. Roos, J. Eschner, and R. Blatt, “Realization of the cirac–zoller controlled-not quantum gate,” Nature422, 408–411 (2003). [CrossRef] [PubMed]
  9. R. Jáuregui, J. Récamier, and P. A. Quinto-Su, “On decoherence and nonlinear effects in the generation of quantum states of motion in paul traps,” J. Opt. B: Quantum Semiclass. Opt.3, 194 (2001). [CrossRef]
  10. S. Brouard and J. Plata, “Heating of a trapped ion by random fields: The influence of the micromotion,” Phys. Rev. A63, 043402 (2001). [CrossRef]
  11. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion micromotion in a paul trap,” J. Appl. Phys.83, 5025–5033 (1998). [CrossRef]
  12. M. D. Barrett, B. DeMarco, T. Schaetz, V. Meyer, D. Leibfried, J. Britton, J. Chiaverini, W. M. Itano, B. Jelenković, J. D. Jost, C. Langer, T. Rosenband, and D. J. Wineland, “Sympathetic cooling of 9Be+and 24Mg+for quantum logic,” Phys. Rev. A68, 042302.
  13. C. Raab, J. Eschner, J. Bolle, H. Oberst, F. Schmidt-Kaler, and R. Blatt, “Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion,” Phys. Rev. Lett.85, 538–541 (2000). [CrossRef] [PubMed]
  14. J. Höffges, H. Baldauf, T. Eichler, S. Helmfrid, and H. Walther, “Heterodyne measurement of the fluorescent radiation of a single trapped ion,” Opt. Commun.133, 170–174 (1997). [CrossRef]
  15. Y. Ibaraki, U. Tanaka, and S. Urabe, “Detection of parametric resonance of trapped ions for micromotion compensation,” Appl. Phys. B105, 219–223 (2011). . [CrossRef]
  16. S. Narayanan, N. Daniilidis, S. A. Moller, R. Clark, F. Ziesel, K. Singer, F. Schmidt-Kaler, and H. Haffner, “Electric field compensation and sensing with a single ion in a planar trap,” J. Appl. Phys.110, 114909 (2011). [CrossRef]
  17. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” in “Confined Electrons and Photons,” vol. 340 of NATO ASI Series, E. Burstein and C. Weisbuch, eds. (SpringerUS, 1995), pp. 839–839. [CrossRef]
  18. A. Stute, B. Casabone, B. Brandsttter, D. Habicher, H. Barros, P. Schmidt, T. Northup, and R. Blatt, “Toward an ionphoton quantum interface in an optical cavity,” Appl. Phys. B107, 1145–1157 (2012). [CrossRef]
  19. J. D. Prestage, G. J. Dick, and L. Maleki, “New ion trap for frequency standard applications,” J. Appl. Phys.66, 1013–1017 (1989). [CrossRef]
  20. D. J. Berkeland, “Linear paul trap for strontium ions,” Rev. Sci. Instrum.73, 2856–2860 (2002). [CrossRef]
  21. B. L. Chuah, N. C. Lewty, and M. D. Barrett, “State detection using coherent raman repumping and two-color raman transfers,” Phys. Rev. A84, 013411 (2011). [CrossRef]
  22. N. C. Lewty, B. L. Chuah, R. Cazan, B. K. Sahoo, and M. D. Barrett, “Spectroscopy on a single trapped 137Ba+ion for nuclear magnetic octupole moment determination,” Opt. Express20, 21379–21384 (2012). [CrossRef] [PubMed]
  23. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983). . [CrossRef]
  24. K. Pyka, N. Herschbach, J. Keller, and T. Mehlstäubler, “A high-precision rf trap with minimized micromotion for an In+multiple-ion clock,” arXiv preprint arXiv:1206.5111 (2012).
  25. D. R. Leibrandt, J. Labaziewicz, V. Vuletić, and I. L. Chuang, “Cavity sideband cooling of a single trapped ion,” Phys. Rev. Lett.103, 103001 (2009). [CrossRef] [PubMed]
  26. P. F. Herskind, S. X. Wang, M. Shi, Y. Ge, M. Cetina, and I. L. Chuang, “Microfabricated surface ion trap on a high-finesse optical mirror,” Opt. Lett.36, 3045–3047 (2011). [CrossRef] [PubMed]
  27. H. Doerk, Z. Idziaszek, and T. Calarco, “Atom-ion quantum gate,” Phys. Rev. A81, 012708 (2010). [CrossRef]
  28. L. H. Nguyên, A. Kalev, M. D. Barrett, and B.-G. Englert, “Micromotion in trapped atom-ion systems,” Phys. Rev. A85, 052718 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited