OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10642–10650

Efficient coupling of propagating broadband terahertz radial beams to metal wires

Zhu Zheng, Natsuki Kanda, Kuniaki Konishi, and Makoto Kuwata-Gonokami  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10642-10650 (2013)
http://dx.doi.org/10.1364/OE.21.010642


View Full Text Article

Enhanced HTML    Acrobat PDF (1423 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Bare metal wires have recently been demonstrated as waveguides for transporting terahertz (THz) radiation, where the guiding mode is radially polarized surface Sommerfeld waves. In this study, we demonstrate high-efficiency coupling of a broadband radially polarized THz pulsed beam, which is generated with a polarization-controlled beam by a segmented half-wave-plate mode converter, to bare copper wires. A total coupling efficiency up to 16.8% is observed, and at 0.3 THz, the maximum coupling efficiency is 66.3%. The results of mode-overlap calculation and numerical simulation support the experimental data well.

© 2013 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6690) Optics at surfaces : Surface waves
(260.3090) Physical optics : Infrared, far
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 25, 2013
Revised Manuscript: April 18, 2013
Manuscript Accepted: April 18, 2013
Published: April 24, 2013

Citation
Zhu Zheng, Natsuki Kanda, Kuniaki Konishi, and Makoto Kuwata-Gonokami, "Efficient coupling of propagating broadband terahertz radial beams to metal wires," Opt. Express 21, 10642-10650 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000). [CrossRef]
  2. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006). [CrossRef] [PubMed]
  3. D. Chen and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express18(4), 3762–3767 (2010). [CrossRef] [PubMed]
  4. D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.6(6), 1122–1135 (2000). [CrossRef]
  5. M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett.92(16), 161102 (2008). [CrossRef]
  6. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010). [CrossRef] [PubMed]
  7. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys.21(11), 1119–1128 (1950). [CrossRef]
  8. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef] [PubMed]
  9. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express14(1), 279–290 (2006). [CrossRef] [PubMed]
  10. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005). [CrossRef]
  11. S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys.14(10), 103049 (2012). [CrossRef]
  12. T. Grosjean, F. Baida, R. Adam, J.-P. Guillet, L. Billot, P. Nouvel, J. Torres, A. Penarier, D. Charraut, and L. Chusseau, “Linear to radial polarization conversion in the THz domain using a passive system,” Opt. Express16(23), 18895–18909 (2008). [CrossRef] [PubMed]
  13. L. Chusseau and J.-P. Guillet, “Coupling and propagation of Sommerfeld waves at 100 and 300 GHz,” J. Infrared Millim. Terahz Waves.33(2), 174–182 (2012). [CrossRef]
  14. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express13(18), 7028–7034 (2005). [CrossRef] [PubMed]
  15. A. Agrawal and A. Nahata, “Coupling terahertz radiation onto a metal wire using a subwavelength coaxial aperture,” Opt. Express15(14), 9022–9028 (2007). [CrossRef] [PubMed]
  16. W. Zhu, A. Agrawal, H. Cao, and A. Nahata, “Generation of broadband radially polarized terahertz radiation directly on a cylindrical metal wire,” Opt. Express16(12), 8433–8439 (2008). [CrossRef] [PubMed]
  17. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express17(3), 1571–1576 (2009). [CrossRef] [PubMed]
  18. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005). [CrossRef]
  19. R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express20(20), 21896–21904 (2012). [CrossRef] [PubMed]
  20. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  21. T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett.106(4), 047401 (2011). [CrossRef] [PubMed]
  22. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett.32(11), 1468–1470 (2007). [CrossRef] [PubMed]
  23. K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett.96(15), 157401 (2006). [CrossRef] [PubMed]
  24. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000). [CrossRef]
  25. K. S. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  26. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express13(2), 511–518 (2005). [CrossRef] [PubMed]
  27. M. Fadhali, J. Saktioto, Y. Zainal, J. Munajat, Ali, and R. Abdul Rahman, “Mode matching for efficient laser diode to single mode fiber coupling,” Proc. SPIE6793, 67930G, 67930G-8 (2008). [CrossRef]
  28. S. Sarkar, K. Thyagarajan, and A. Kumar, “Gaussian approximation of the fundamental mode in single mode elliptic core fibers,” Opt. Commun.49(3), 178–183 (1984). [CrossRef]
  29. D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt.8(2), 303–307 (2003). [CrossRef] [PubMed]
  30. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003). [CrossRef] [PubMed]
  31. S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004). [CrossRef]
  32. A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron.14(6), 1515–1521 (2008). [CrossRef]
  33. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006). [CrossRef] [PubMed]
  34. A. I. Fernández-Domínguez, C. R. Williams, F. J. García-Vidal, L. Martín-Moreno, S. R. Andrews, and S. A. Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett.93(14), 141109 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited