OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10651–10658

Numerical analysis on the feasibility of a multi-layered dielectric sphere as a three-dimensional photonic crystal

Kenji Imakita, Hiroki Shibata, Minoru Fujii, and Shinji Hayashi  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10651-10658 (2013)
http://dx.doi.org/10.1364/OE.21.010651


View Full Text Article

Enhanced HTML    Acrobat PDF (1525 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The radiative decay rate of a dipole emitter inside the core of a multi-layered dielectric sphere is theoretically investigated. It is shown that, when the thickness of each layer coincides with a quarter wavelength, the multi-layered sphere has a great potential to work as a three-dimensional photonic crystal with a high quality factor and a small mode volume. From the analysis of the dipole position dependence of a radiative decay rate, we show that a smaller core radius, a quarter wavelength at the smallest, is more suitable for real applications. The investigation on the tolerance for thickness nonuniformity reveals that the thickness variation of 10% is tolerable.

© 2013 OSA

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: February 26, 2013
Revised Manuscript: April 4, 2013
Manuscript Accepted: April 15, 2013
Published: April 24, 2013

Citation
Kenji Imakita, Hiroki Shibata, Minoru Fujii, and Shinji Hayashi, "Numerical analysis on the feasibility of a multi-layered dielectric sphere as a three-dimensional photonic crystal," Opt. Express 21, 10651-10658 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10651


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1, 449–458 (2007). [CrossRef]
  2. P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004). [CrossRef] [PubMed]
  3. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2011). [CrossRef]
  4. L. A. Stewart, Y. Zhai, J.M. Dawes, M. J. Steel, J. R. Rabeau, and M. J. Withford, “Single photon Emission from Diamond nanocrystals in an Opal Photonic Crystal,” Opt. Express17, 18044–18053 (2009). [CrossRef] [PubMed]
  5. G. Burlak, S. Koshevaya, J. Sanchez-mondragon, and V. Grimalsky, “Electromagnetic eigenoscillations and fields in a dielectric microsphere with multilayer spherical stack,” Opt. Commun.187, 91–105 (2001). [CrossRef]
  6. Z. Ren, T. Zhai, Z. Wang, J. Zhou, and D. Liu, “Complete Band Gaps in the Visible Range Achieved by a Low-Refractive-Index Material,” Adv. Mater.20, 2337–2340 (2008). [CrossRef]
  7. D. Sharp, A. Turberfield, and R. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B68, 205102 (2003). [CrossRef]
  8. D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, “Nanoparticle Architectures Templated by SiO2/Fe2O3Nanocomposites,” Chem. Mater.18, 614–619 (2006). [CrossRef]
  9. H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2Core-shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell,” Jpn. J. Appl. Phys.46, 2567–2570 (2007). [CrossRef]
  10. G.-C. Chen, C.-Y. Kuo, and S.-Y. Lu, “A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells,” J. Am. Ceram. Soc.88, 277–283 (2005). [CrossRef]
  11. W. Liu, W. Zhong, H. Jiang, N. Tang, X. Wu, and Y. Du, “Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method,” Surf. and Coat. Tech.200, 5170–5174 (2006). [CrossRef]
  12. H. Wang, M. Yu, C. Lin, X. Liu, and J. Lin, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2Particles with Core-shell Structure,” J. Phys. Chem. C111, 11223–11230 (2007). [CrossRef]
  13. M. Lessard-viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET Enhancement in Multilayer Core-Shell Nanoparticles,” Nano Lett.9, 3066–3071 (2009). [CrossRef] [PubMed]
  14. D. Brady, G. Papen, and J.E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B10, 646–657 (1993). [CrossRef]
  15. G. Sullivan and D.G. Hall, Radiation in spherically symmetric structures. II. “Enhancement and inhibition of dipole radiation in a spherical Bragg cavity,” Phys. Rev. A50, 2708 (1994). [CrossRef] [PubMed]
  16. A. Moroz, “A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere,” Ann. Phys.315, 352–418 (2005). [CrossRef]
  17. A. Moroz, “Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell,” Chem. Phys.317, 1–15 (2005). [CrossRef]
  18. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+nanoparticles on the surrounding medium,” Phys. Rev. B60, 14012–14015 (1999). [CrossRef]
  19. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998). [CrossRef]
  20. V. Puri, “Refractive index and adhesion of Al2O3thin films obtained from different processes - a comparative study,” Thin Solid Films288, 120–124 (1996). [CrossRef]
  21. D.-J. Won, C.-H. Wang, H.-K. Jang, and D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2films on structural and optical properties,” Appl. Phys. A73, 595–600 (2001). [CrossRef]
  22. I. Abram, I. Rovert, and R. Kuszelwicz, “Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors,” IEEE J. Quantum Electron.34, 71–76 (1998). [CrossRef]
  23. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett.83, 1915–1917 (2003). [CrossRef]
  24. J. Li, X. Li, X. Sun, and T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+Doping,” J. Phys. Chem. C112, 11707–11716 (2008). [CrossRef]
  25. B. Aiken, W. P. HSU, and E. Matijevic, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: III, Yttrium (III) and Mixed Yttrium (III)/Cerium (III) Systems,” J. Am. Ceram. Soc.71, 845–853 (1988). [CrossRef]
  26. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles”, Nat. Mater.10, 968–973 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited