OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10706–10711

Stability of a laser cavity with non-parabolic phase transformation elements

Igor A. Litvin  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10706-10711 (2013)
http://dx.doi.org/10.1364/OE.21.010706


View Full Text Article

Enhanced HTML    Acrobat PDF (1305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a general approach to determine the stability of a laser cavity which can include non-conventional phase transformation elements. We consider two pertinent examples of the detailed investigation of the stability of a laser cavity firstly with a lens with spherical aberration and thereafter a lens axicon doublet to illustrate the implementation of the given approach. In the particular case of the intra–cavity elements having parabolic surfaces, the approach comes to the well–known stability condition for conventional laser resonators namely 0(1z/ R 1 )(1z/ R 2 )1.

© 2013 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3410) Lasers and laser optics : Laser resonators

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 11, 2013
Revised Manuscript: March 30, 2013
Manuscript Accepted: March 31, 2013
Published: April 24, 2013

Citation
Igor A. Litvin, "Stability of a laser cavity with non-parabolic phase transformation elements," Opt. Express 21, 10706-10711 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10706


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. A. Litvin and A. Forbes, “Intra-cavity flat-top beam generation,” Opt. Express17(18), 15891–15903 (2009). [CrossRef] [PubMed]
  2. I. A. Litvin and A. Forbes, “Gaussian mode selection with intra-cavity diffractive optics,” Opt. Lett.34(19), 2991–2993 (2009). [CrossRef] [PubMed]
  3. I. A. Litvin, “Implementation of intra-cavity beam shaping technique to enhance pump efficiency,” J. Mod. Opt.59(3), 241–244 (2012). [CrossRef]
  4. W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express17(14), 12057–12069 (2009). [CrossRef] [PubMed]
  5. H. Harry, “Aspheric optical elements.” US Philips Sep, 14 1976: US patent 3980399 (1976)
  6. G. J. Swanson and W. B. Veldkamp, “High-efficiency, multilevel, diffractive optical elements,” US patent 4895790 (1990).
  7. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt.28(5), 976–983 (1989). [CrossRef] [PubMed]
  8. E. Acosta and S. Bará, “Variable aberration generators using rotated Zernike plates,” J. Opt. Soc. Am. A22(9), 1993–1996 (2005). [CrossRef] [PubMed]
  9. S. Ngcobo, I. A. Litvin, L. Burger, and A. Forbes, “The digital laser,” Nat. Photonics (submitted to).
  10. B. Yalizay, B. Soylu, and S. Akturk, “Optical element for generation of accelerating Airy beams,” J. Opt. Soc. Am. A27(10), 2344–2346 (2010). [CrossRef] [PubMed]
  11. E. Acosta and J. Sasián, “Phase plates for generation of variable amounts of primary spherical aberration,” Opt. Express19(14), 13171–13178 (2011). [CrossRef] [PubMed]
  12. A. E. Siegman, Lasers (University Science Books, 1986).
  13. A. M. Bonnefois, M. Gilbert, P. Y. Thro, and J. M. Weulersse, “Thermal lensing and spherical aberration in high–power transversally pumped laser rods,” Opt. Commun.259(1), 223–235 (2006). [CrossRef]
  14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J.40, 453–488 (1961).
  15. O. Svelto, Principles of Lasers, 3rd edition (Plenum Press, 1989), pp. 189–190.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited