OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10739–10745

Highly efficient beam steering with a transparent metasurface

Zeyong Wei, Yang Cao, Xiaopeng Su, Zhijie Gong, Yang Long, and Hongqiang Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10739-10745 (2013)
http://dx.doi.org/10.1364/OE.21.010739


View Full Text Article

Enhanced HTML    Acrobat PDF (2761 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an ultra-thin planar metasurface with phase discontinuities for highly efficient beam steering. The effect benefits from the broadband transparency and flexible phase modulation of stacked metal/dielectric multi-layers that is perforated with coaxial annular apertures. Proof-of-principle experiments verify that an efficiency of 65% and a deflection angle of 18 o at 10GHz are achieved for the transmitted beam, which are also in good agreement with the finite-difference-method-in-time-domain (FDTD) simulations. The scheme shall be general for the design of beam-steering transmitters in all frequencies.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: February 25, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: March 28, 2013
Published: April 25, 2013

Citation
Zeyong Wei, Yang Cao, Xiaopeng Su, Zhijie Gong, Yang Long, and Hongqiang Li, "Highly efficient beam steering with a transparent metasurface," Opt. Express 21, 10739-10745 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, Oxford, Angleterre, 1980).
  2. N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley-IEEE Press, New York, 2006).
  3. W. Cai and V. Shalaev, Optical metamaterials: fundamentals and applications (Springer, New York, 2009).
  4. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]
  5. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008). [CrossRef] [PubMed]
  6. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  9. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion Optics: The Optical Transformation of an Object into Another Object,” Phys. Rev. Lett.102(25), 253902 (2009). [CrossRef] [PubMed]
  10. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006). [CrossRef] [PubMed]
  11. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010). [CrossRef] [PubMed]
  12. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012). [CrossRef] [PubMed]
  13. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011). [CrossRef]
  14. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  16. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  17. S. Carretero-Palacios, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B85(3), 035417 (2012). [CrossRef]
  18. Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010). [CrossRef]
  19. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006). [CrossRef] [PubMed]
  20. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011). [CrossRef] [PubMed]
  21. F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,” Nano Lett.12(3), 1702–1706 (2012). [CrossRef] [PubMed]
  22. R. Blanchard, G. Aoust, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Modeling nanoscale V-shaped antennas for the design of optical phased arrays,” Phys. Rev. B85(15), 155457 (2012). [CrossRef]
  23. P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012). [CrossRef]
  24. X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427–427 (2012). [CrossRef] [PubMed]
  25. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012). [CrossRef] [PubMed]
  26. X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. T. Yu, “Integrated Compact Optical Vortex Beam Emitters,” Science338(6105), 363–366 (2012). [CrossRef] [PubMed]
  27. A. Djalalian-Assl, D. E. Gómez, A. Roberts, and T. J. Davis, “Frequency-dependent optical steering from subwavelength plasmonic structures,” Opt. Lett.37(20), 4206–4208 (2012). [CrossRef] [PubMed]
  28. M. Kang, J. Chen, X. L. Wang, and H. T. Wang, “Twisted vector field from an inhomogeneous and anisotropic metamaterial,” J. Opt. Soc. Am. B29(4), 572–576 (2012). [CrossRef]
  29. M. Kang, T. H. Feng, H. T. Wang, and J. S. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express20(14), 15882–15890 (2012). [CrossRef] [PubMed]
  30. N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys.111(11), 113101 (2012). [CrossRef]
  31. N. M. Litchinitser, “Applied Physics. Structured Light Meets Structured Matter,” Science337(6098), 1054–1055 (2012). [CrossRef] [PubMed]
  32. T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20(14), 16092–16103 (2012). [CrossRef] [PubMed]
  33. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011). [CrossRef] [PubMed]
  34. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982). [CrossRef]
  35. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A.: Pure Appl. Opt.2, 48–51 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited