OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10753–10763

Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition

Judson D. Ryckman, Kent A. Hallman, Robert E. Marvel, Richard F. Haglund, Jr., and Sharon M. Weiss  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10753-10763 (2013)
http://dx.doi.org/10.1364/OE.21.010753


View Full Text Article

Enhanced HTML    Acrobat PDF (3340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Vanadium dioxide (VO2) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO2 onto silicon photonic devices and demonstrate all-optical switching and reconfiguration of ultra-compact broadband Si-VO2 absorption modulators (L < 1 μm) and ring-resonators (R ~ λ0). Optically inducing the SMT in a small, ~0.275 μm2, active area of polycrystalline VO2 enables Si-VO2 structures to achieve record values of absorption modulation, ~4 dB μm−1, and intracavity phase modulation, ~π/5 rad μm−1. This in turn yields large, tunable changes to resonant wavelength, |ΔλSMT| ~ 3 nm, approximately 60 times larger than Si-only control devices, and enables reconfigurable filtering and optical modulation in excess of 7 dB from modest Q-factor (~103), high-bandwidth ring resonators (>100 GHz). All-optical integrated Si-VO2 devices thus constitute platforms for reconfigurable photonics, bringing new opportunities to realize dynamic on-chip networks and ultrafast optical shutters and modulators.

© 2013 OSA

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(230.3120) Optical devices : Integrated optics devices
(230.4110) Optical devices : Modulators
(230.5750) Optical devices : Resonators
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Ultrafast Optics

History
Original Manuscript: March 19, 2013
Revised Manuscript: April 21, 2013
Manuscript Accepted: April 21, 2013
Published: April 25, 2013

Citation
Judson D. Ryckman, Kent A. Hallman, Robert E. Marvel, Richard F. Haglund, and Sharon M. Weiss, "Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition," Opt. Express 21, 10753-10763 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10753


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  2. Q. F. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express15(3), 924–929 (2007). [CrossRef] [PubMed]
  3. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  4. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature456(7221), 480–484 (2008). [CrossRef] [PubMed]
  5. P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters,” Nat Commun3, 846 (2012). [CrossRef] [PubMed]
  6. M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol.6(11), 726–732 (2011). [CrossRef] [PubMed]
  7. N. N. Feng, D. Z. Feng, S. R. Liao, X. Wang, P. Dong, H. Liang, C. C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011). [CrossRef] [PubMed]
  8. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011). [CrossRef] [PubMed]
  9. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010). [CrossRef]
  10. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009). [CrossRef]
  11. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  12. J. Nag and R. F. Haglund., “Synthesis of vanadium dioxide thin films and nanoparticles,” J. Phys. Condens. Matter20(26), 264016 (2008). [CrossRef]
  13. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968). [CrossRef]
  14. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol.4(11), 732–737 (2009). [CrossRef] [PubMed]
  15. D. Ruzmetov, G. Gopalakrishnan, J. D. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys.106(8), 083702 (2009). [CrossRef]
  16. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature487(7408), 459–462 (2012). [CrossRef] [PubMed]
  17. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature487(7407), 345–348 (2012). [CrossRef] [PubMed]
  18. J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, “Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams,” Nat. Nanotechnol.7(6), 357–362 (2012). [CrossRef]
  19. M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund., “Hot electron injection driven phase transitions,” Phys. Rev. B86(13), 134101 (2012). [CrossRef]
  20. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett.87(23), 237401 (2001). [CrossRef] [PubMed]
  21. A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B70(16), 161102 (2004). [CrossRef]
  22. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009). [CrossRef] [PubMed]
  23. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory Metamaterials,” Science325(5947), 1518–1521 (2009). [CrossRef] [PubMed]
  24. M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett.30(5), 558–560 (2005). [CrossRef] [PubMed]
  25. A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. S. Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett.102(6), 061101 (2013). [CrossRef]
  26. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express18(11), 11192–11201 (2010). [CrossRef] [PubMed]
  27. J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO₂ ring resonators,” Opt. Express20(12), 13215–13225 (2012). [CrossRef] [PubMed]
  28. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012). [CrossRef]
  29. J. M. Choi, R. K. Lee, and A. Yariv, “Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation,” Opt. Lett.26(16), 1236–1238 (2001). [CrossRef] [PubMed]
  30. M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett.92(18), 181904 (2008). [CrossRef]
  31. R. E. Marvel, K. Appavoo, B. K. Choi, J. Nag, and R. F. Haglund., “Electron-beam deposition of vanadium dioxide thin films,” Appl. Phys. A, (2012). [CrossRef]
  32. C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, and A. Leitenstorfer, “Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2.,” Phys. Rev. Lett.99(11), 116401 (2007). [CrossRef] [PubMed]
  33. S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R. F. Haglund, J. Stähler, and M. Wolf, “Ultrafast changes in lattice symmetry probed by coherent phonons,” Nat Commun3, 721 (2012). [CrossRef] [PubMed]
  34. Z. S. Tao, T. R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C. Y. Ruan, K. Wang, and J. Q. Wu, “Decoupling of Structural and Electronic Phase Transitions in VO2.,” Phys. Rev. Lett.109(16), 166406 (2012). [CrossRef] [PubMed]
  35. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express13(19), 7298–7303 (2005). [CrossRef] [PubMed]
  36. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007). [CrossRef] [PubMed]
  37. S. Lysenko, A. Rua, V. Vikhnin, F. Fernandez, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007). [CrossRef]
  38. Y. Zhang and S. Ramanathan, “Analysis of “on” and “off” times for thermally driven VO2 metal-insulator transition nanoscale switching devices,” Solid-State Electron.62(1), 161–164 (2011). [CrossRef]
  39. A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B83(19), 195120 (2011). [CrossRef]
  40. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Z. Feng, G. L. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010). [CrossRef] [PubMed]
  41. R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett.85(22), 5191–5193 (2004). [CrossRef]
  42. J. Nag, R. F. Haglund, E. Andrew Payzant, and K. L. More, “Non-congruence of thermally driven structural and electronic transitions in VO2,” J. Appl. Phys.112(10), 103532 (2012). [CrossRef]
  43. T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H. C. Bandulet, D. Brassard, J. C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide,” Phys. Rev. B85(15), 155120 (2012). [CrossRef]
  44. H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  45. J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett.101(7), 071104 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited