OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10764–10771

Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers

Jacob Ramsay, Sune Dupont, Mikkel Johansen, Lars Rishøj, Karsten Rottwitt, Peter Morten Moselund, and Søren Rud Keiding  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10764-10771 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN fiber. As a consequence of intermodal scattering and the difference in group velocity for the modes, the supercontinuum splits up spatially and temporally. Experimental results indicate that a significant part of the radiation propagates in HOMs. Conventional simulations of super-continuum generation do not include scattering into HOMs, and including this provides an extra degree of freedom for tailoring supercontinuum sources.

© 2013 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.7220) Nonlinear optics : Upconversion
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: January 30, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 9, 2013
Published: April 25, 2013

Jacob Ramsay, Sune Dupont, Mikkel Johansen, Lars Rishøj, Karsten Rottwitt, Peter Morten Moselund, and Søren Rud Keiding, "Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers," Opt. Express 21, 10764-10771 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135 (2006). [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett.24,584–587 (1970). [CrossRef]
  3. C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers and Optics92,367–378 (2008). [CrossRef]
  4. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett.,33, 285–287 (2008). [CrossRef]
  5. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000). [CrossRef]
  6. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature, 416, 233–237 (2002). [CrossRef] [PubMed]
  7. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20, 4887–4892 (2012). [CrossRef] [PubMed]
  8. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. Fred, L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28, 2486–2498 (2011). [CrossRef]
  9. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.,31, 2553–2555 (2006). [CrossRef]
  10. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B,29, 635–645 (2012). [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  12. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express, 10, 1215–1221 (2002). [CrossRef] [PubMed]
  13. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995). [CrossRef] [PubMed]
  14. F. Gan, “Optical properties of fluoride glasses - a review,” J. of Non-Cryst. Solids, 184, 9–20 (1995). [CrossRef]
  15. P. Hamm, “Coherent effects in femtosecond infrared spectroscopy,” Chem. Phys., 200, 415–429 (1995). [CrossRef]
  16. H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett.66, 1834–1837 (1991). [CrossRef] [PubMed]
  17. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B,25, 1645–1654 (2008). [CrossRef]
  18. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express176134–6147 (2009). [CrossRef] [PubMed]
  19. Y. Vidne and M. Rosenbluh, “Spatial modes in a PCF fiber generated continuum,” Opt. Express, 13, 9721–9728 (2005). [CrossRef] [PubMed]
  20. J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal C̆erenkov radiation in a higher-order-mode fiber,” Opt. Lett.,37, 4410–4412 (2012). [CrossRef]
  21. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B,29, 1563–1568 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited