OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10772–10778

Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser

Antonio Hurtado, Jesse Mee, Mohsen Nami, Ian D. Henning, Michael J. Adams, and Luke F. Lester  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10772-10778 (2013)
http://dx.doi.org/10.1364/OE.21.010772


View Full Text Article

Enhanced HTML    Acrobat PDF (1818 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot’s unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks.

© 2013 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(350.4010) Other areas of optics : Microwaves
(250.5960) Optoelectronics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 15, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 15, 2013
Published: April 25, 2013

Citation
Antonio Hurtado, Jesse Mee, Mohsen Nami, Ian D. Henning, Michael J. Adams, and Luke F. Lester, "Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser," Opt. Express 21, 10772-10778 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1198–1211 (2011). [CrossRef]
  2. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46(3), 421–428 (2010). [CrossRef]
  3. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett.31(15), 2254–2256 (2006). [CrossRef] [PubMed]
  4. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J.3(4), 644–650 (2011). [CrossRef]
  5. M. Pochet, T. Locke, and N. G. Usechak, “Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection,” IEEE Photon. J.4(5), 1881–1891 (2012). [CrossRef]
  6. T. B. Simpson, J.-M. Liu, M. AlMulla, N. Usechak, and V. Kovanis, “Tunable photonic microwave oscillator self-locked by polarization-rotated optical feedback” IEEE International Frequency Control Symposium, Proceedings, 1–5, (2012). [CrossRef]
  7. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express20(12), 13390–13401 (2012). [CrossRef] [PubMed]
  8. J. F. Hayau, O. Vaudel, P. Besnard, F. Lelarge, B. Rousseau, L. Le Gouezigou, F. Pommereau, F. Poingt, O. Le Gouezigou, A. Shen, G.-H. Duan, O. Dehaese, F. Grillot, R. Piron, S. Loualiche, A. Martinez, K. Merghem, and A. Ramdane, “Optical injection of quantum dot and quantum dash semiconductor lasers” European Conf. of Laser and Electrooptics, CLEO-Europe 2009, Munich, 14–19 June 2009. [CrossRef]
  9. E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011). [CrossRef]
  10. T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett.35(7), 937–939 (2010). [CrossRef] [PubMed]
  11. B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, E. A. Viktorov, and T. Erneux, Optically Injected Single-Mode Quantum Dot Lasers in Quantum Dot Devices (Springer, 2012), Chap. 1, pp. 1–22
  12. A. Hurtado, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Bistability patterns and nonlinear switching with very high contrast ratio in a 1550nm quantum dash semiconductor laser,” Appl. Phys. Lett.101(16), 161117 (2012). [CrossRef]
  13. F. van Dijk, B. Charbonnier, S. Constant, A. Enard, S. Fedderwitz, S. Formont, I. F. Lealman, F. Lecoche, F. Lelarge, D. Moodie, L. Ponnampalam, C. Renaud, M. J. Robertson, A. J. Seeds, A. Stohr, and M. Weiss, “Quantum dash mode-locked lasers for millimeter wave signal generation and transmission” 23rd Annual Meeting of the IEEE Photonics Society, 187–188 (2010). [CrossRef]
  14. N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Characterization of wavelength-tunable quantum dot external cavity laser for 1.3-µm-waveband coherent light sources,” Jpn. J. Appl. Phys.51(2), 02BG08 (2012). [CrossRef]
  15. G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett.21(6), 389–391 (2009). [CrossRef]
  16. M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express20(2), 1769–1774 (2012). [CrossRef] [PubMed]
  17. M. Pochet, N. A. Naderi, V. Yan Li, Kovanis, and L. F. Lester, “Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett.22(11), 763–765 (2010). [CrossRef]
  18. P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 426–438 (2000). [CrossRef]
  19. H. Y. Liu, T. J. Badcock, K. M. Groom, M. Hopkinson, M. Gutiérrez, D. T. Childs, C. Jin, R. A. Hogg, I. R. Sellers, D. J. Mowbray, M. S. Skolnick, R. Beanland, and D. J. Robbins, “High-performance 1.3µm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proc. SPIE Vol. 6184, 618417 (2006).
  20. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett.11(12), 1527–1529 (1999). [CrossRef]
  21. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep.416(1-2), 1–128 (2005). [CrossRef]
  22. H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, and L. F. Lester, “High External Feedback Resistance of Laterally Loss-Coupled Distributed Feedback Quantum Dot Semiconductor Lasers,” IEEE Photon. Technol. Lett.15(11), 1504–1506 (2003). [CrossRef]
  23. L. Zhang, R. Wang, Z. Zou, A. Gray, L. Olana, T. Newell, D. Webb, P. Varangis, and L. F. Lester, “InAs quantum dot DFB lasers on GaAs for uncooled 1310 nm fiber communications” Optical Fiber Communication Conference (OFC), Atlanta, GA (2003).
  24. H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys.38(13), 2112–2118 (2005). [CrossRef]
  25. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express18(9), 9423–9428 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited