OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10792–10800

Build up of off-diagonal long-range order in microcavity exciton-polaritons across the parametric threshold

R. Spano, J. Cuadra, C. Lingg, D. Sanvitto, M. D. Martin, P. R. Eastham, M. van der Poel, J. M. Hvam, and L. Viña  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10792-10800 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an experimental study of the spontaneous spatial and temporal coherence of polariton condensates generated in the optical parametric oscillator configuration, below and at the parametric threshold, and as a function of condensate area. Above the threshold we obtain very long coherence times (up to 3 ns) and a spatial coherence extending over the entire condensate (40μm). The very long coherence time and its dependence on condensate area and pump power reflect the suppression of polariton-polariton interactions by an effect equivalent to motional narrowing.

© 2013 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(240.5420) Optics at surfaces : Polaritons
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(100.3175) Image processing : Interferometric imaging
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Optics at Surfaces

Original Manuscript: February 22, 2013
Revised Manuscript: April 15, 2013
Manuscript Accepted: April 17, 2013
Published: April 25, 2013

R. Spano, J. Cuadra, C. Lingg, D. Sanvitto, M. D. Martin, P. R. Eastham, M. van der Poel, J. M. Hvam, and L. Viña, "Build up of off-diagonal long-range order in microcavity exciton-polaritons across the parametric threshold," Opt. Express 21, 10792-10800 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Physics of Semiconductor Microcavities, ed. B. Deveuad, (Wiley-VCH, Berlin, 2007).
  2. O. Penrose and L. Onsager, “Bose-Einstein Condensation and Liquid Helium,” Phys. Rev.104, 576–584 (1956). [CrossRef]
  3. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443, 409–414 (2006). [CrossRef] [PubMed]
  4. E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nature Phys.6, 860–864 (2010). [CrossRef]
  5. L. Pitaevskii and S. Stringari, Bose-Einstein condensation(Oxford University Press, Oxford, 2003).
  6. F. P. Laussy, G. Malpuech, A. Kavokin, and P. Bigenwald, “Spontaneous Coherence Buildup in a Polariton Laser,” Phys. Rev. Lett.93, 016402 (2004). [CrossRef]
  7. K. G. Lagoudakis, B. Pietka, M. Wouters, R. André, and B. Deveaud-Plédran, “Coherent Oscillations in an Exciton-Polariton Josephson Junction,” Phys. Rev. Lett.105, 120403 (2010). [CrossRef] [PubMed]
  8. A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics4, 361–366 (2010). [CrossRef]
  9. R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett.85, 3680–3683 (2000). [CrossRef] [PubMed]
  10. J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B62, R16247–16250 (2000). [CrossRef]
  11. A. I. Tartakovskii, D. N. Krizhanovskii, and V. D. Kulakovskii, “Polariton-polariton scattering in semiconductor microcavities: Distinctive features and similarities to the three-dimensional case,” Phys. Rev. B62, R13298–13301 (2000). [CrossRef]
  12. I. Carusotto and C. Ciuti, “Spontaneous microcavity-polariton coherence across the parametric threshold: Quantum Monte Carlo studies,” Phys. Rev. B72, 125335 (2005). [CrossRef]
  13. In this work we consider two kinds of threshold, associated with tuning the pump energy and power. They are denoted EThand PThrespectively.
  14. D. M. Whittaker and P. R. Eastham, “Coherence properties of the microcavity polariton condensate,” Europhys. Lett.87, 27002 (2009). [CrossRef]
  15. F. Tassone and Y. Yamamoto, “Lasing and squeezing of composite bosons in a semiconductor microcavity,” Phys. Rev. A62, 063809 (2000). [CrossRef]
  16. D. Porras and C. Tejedor, “Linewidth of a polariton laser: Theoretical analysis of self-interaction effects,” Phys. Rev. B67, 161310(R)(2003). [CrossRef]
  17. D. N. Krizhanovskii, D. Sanvitto, A. P. D. Love, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Dominant Effect of Polariton-Polariton Interactions on the Coherence of the Microcavity Optical Parametric Oscillator,” Phys. Rev. Lett.97, 097402 (2006). [CrossRef] [PubMed]
  18. F. P. Laussy, I. A. Shelykh, G. Malpuech, and A. Kavokin, “Effects of Bose-Einstein condensation of exciton polaritons in microcavities on the polarization of emitted light,” Phys. Rev. B73, 035315 (2006). [CrossRef]
  19. A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys.2, 759–764 (2006). [CrossRef]
  20. D. N. Krizhanovskii, K. G. Lagoudakis, M. Wouters, B. Pietka, R. A. Bradley, K. Guda, D. M. Whittaker, M. S. Skolnick, B. Deveaud-Plédran, M. Richard, R. André, and Le Si Dang, “Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities,” Phys. Rev. B80, 045317 (2009). [CrossRef]
  21. H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett.99, 126403 (2007). [CrossRef] [PubMed]
  22. H. P. Baltes, “Coherence and the radiation laws,” Appl. Phys.12, 221–244 (1977). [CrossRef]
  23. M. Richard, M. Wouters, and L. S. Dang, in Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures, NanoScience and Technology 146, eds. G. Slavcheva and P. Roussignol, (Springer-VerlagBerlin2010) Chap. 11 .
  24. The detuning δis defined as the difference between the bare cavity and exciton energies.
  25. A. P. D. Love, D. N. Krizhanovskii, D. M. Whittaker, R. Bouchekioua, D. Sanvitto, S. Al Rizeiqi, R. Bradley, M. S. Skolnick, P. R. Eastham, R. André, and Le Si Dang, “Intrinsic Decoherence Mechanisms in the Microcavity Polariton Condensate,” Phys. Rev. Lett.101, 067404 (2008). [CrossRef] [PubMed]
  26. A. Baas, J.-Ph. Karr, M. Romanelli, A. Bramati, and E. Giacobino, “Quantum Degeneracy of Microcavity Polaritons,” Phys. Rev. Lett.96, 176401 (2006). [CrossRef] [PubMed]
  27. M. Wouters and I. Carusotto, “Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A76, 043807 (2007). [CrossRef]
  28. P. R. Eastham and P. B. Littlewood, “Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity,” Phys. Rev. B73, 085306 (2006). [CrossRef]
  29. P.R. Eastham, “Mode locking and mode competition in a nonequilibrium solid-state condensate,” Phys. Rev. B78, 035319 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited