OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10821–10830

The absorption tunability and enhanced electromagnetic coupling of terahertz-plasmons in grating-gate AlN/GaN plasmonic device

Lin Wang, Xiaoshuang Chen, Weida Hu, Anqi Yu, Shaowei Wang, and Wei Lu  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10821-10830 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes the dynamic interaction between plasmons in a two dimensional electron gas system under electrical tuning to the high density regime in AlN/GaN high electron mobility transistor. The results demonstrate an enhanced resonance when the two plasmons are commonly excited, during which the potentially splitting phenomenon of such resonance is explored in detail. An asymmetrical plasmon possess wide frequency tunability has also been demonstrated in the AlN/GaN system, on the contrary, the results also indicate a finite tunable regime of symmetrical-plasmons as limited by the coupling strength between such plasmons. For the devices with narrow gate-fingers, significant near-field enhancement can be obtained due to the strong cavity pumping of electromagnetic energy. These properties may have important applications including high-responsivity quantum-dot detection systems, THz modulator etc.

© 2013 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(050.2770) Diffraction and gratings : Gratings
(040.2235) Detectors : Far infrared or terahertz
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: January 2, 2013
Revised Manuscript: March 17, 2013
Manuscript Accepted: April 19, 2013
Published: April 25, 2013

Lin Wang, Xiaoshuang Chen, Weida Hu, Anqi Yu, Shaowei Wang, and Wei Lu, "The absorption tunability and enhanced electromagnetic coupling of terahertz-plasmons in grating-gate AlN/GaN plasmonic device," Opt. Express 21, 10821-10830 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Pala and M. S. Shur, “Plasmonic terahertz detectors for biodetection,” Electron. Lett.44(24), 1391–1392 (2008). [CrossRef]
  2. M. S. Shur, “Silicon and nitride FETs for THz sensing,” Proc. SPIE8031, 80310J (2011). [CrossRef]
  3. T. A. Elkhatib, V. Y. Kachorovskii, W. J. Stillman, D. B. Veksler, K. N. Sala, X.-C. Zhang, and M. S. Shur “Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series,” IEEE Trans. Microave Theory Tech.58(2), 331–339 (2010). [CrossRef]
  4. E. A. Shaner, M. C. Wanke, A. D. Grine, S. K. Lyo, J. L. Reno, and S. J. Allen, “Enhanced responsivity in membrane isolated split-grating-gate plasmonic terahertz detectors,” Appl. Phys. Lett.90(18), 181127 (2007). [CrossRef]
  5. S. Kim, J. D. Zimmerman, P. Focardi, A. C. Gossard, D. H. Wu, and M. S. Sherwin, “Room-temperature terahertz detection based on bulk plasmons in antenna-coupled GaAs field effect transistors,” Appl. Phys. Lett.92(25), 253508 (2008). [CrossRef]
  6. W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Łusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. E. I. Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Milli Terahz Waves.32(5), 618–628 (2011). [CrossRef]
  7. W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakonski, K. Kavpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. E. I. Fatimy, Y. M. Meziani, and T. Otsuji, “Field effect transistors for terahertz detection: physics and first imaging applications,” J. Infrared Milli Terahz Waves.30, 1319–1337 (2009).
  8. G. C. Dyer, G. R. Aizin, J. L. Reno, E. A. Shaner, and S. J. Allen, “Novel tunable millimeter-wave grating-gated plasmonic detectors,” IEEE J. Sel. Top. Quantum Electron.17(1), 85–91 (2011). [CrossRef]
  9. S. J. Allen, D. C. Tsui, and R. A. Logan, “Observation of the two-dimensional plasmon in silicon inversion layers,” Phys. Rev. Lett.38(17), 980–983 (1977). [CrossRef]
  10. M. Dyakonov and M. S. Shur, “Detection, mixing and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron. Dev.43(3), 380–387 (1996). [CrossRef]
  11. W. Knap, F. Teppe, N. Dyakonova, D. Coquillat, and J. Łusakowski, “Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission,” J. Phys. Condens. Matter20(38), 384205 (2008). [CrossRef] [PubMed]
  12. E. A. Shaner, M. Lee, M. C. Wanke, A. D. Grine, J. L. Reno, and S. J. Allen, “Single-quantum-well grating-gated terahertz plasmon detectors,” Appl. Phys. Lett.87(19), 193507 (2005). [CrossRef]
  13. M. Dyakonov and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current,” Phys. Rev. Lett.71(15), 2465–2468 (1993). [CrossRef] [PubMed]
  14. V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Yu. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett.98(15), 153504 (2011). [CrossRef]
  15. V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta, S. J. Allen, N. J. M. Horing, and M. C. Wanke, “Absorption of terahertz radiation by plasmon modes in a grid-gated double-quantum-well field-effect transistor,” J. Appl. Phys.94(5), 3556–3562 (2003). [CrossRef]
  16. X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors,” Appl. Phys. Lett.81(9), 1627–1629 (2002). [CrossRef]
  17. A. V. Muravjov, D. B. Veksler, X. Hu, R. Gaska, N. Pala, H. Saxena, R. E. Peale, and M. S. Shur, “Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures,” Proc. SPIE7311, 73110D (2009). [CrossRef]
  18. M. I. Dyakonov and M. S. Shur, “Plasma wave electronics: novel terahertz devices using two dimensional electron fluid, ” IEEE Trans. Electron Devices43(10), 1640–1645 (1996). [CrossRef]
  19. E. A. Shaner, A. D. Grine, J. L. Reno, M. C. Wanke, and S. J. Allen, “Next-generation detectors—Plasmon grating-gate devices have potential as tunable terahertz detectors,” Laser Focus World44, 131–133 (2008).
  20. V. V. Popov, A. N. Koudymov, M. S. Shur, and O. V. Polischuk, “Tuning of ungated plasmons by a gate in the field-effect transistor with two-dimensional electron channel,” J. Appl. Phys.104(2), 024508 (2008). [CrossRef]
  21. R. E. Peale, H. Saxena, W. R. Buchwald, G. C. Dyer, and S. J. Allen., “Grating-gate tunable plasmon absorption in InP and GaN based HEMTs,” Proc. SPIE7311, 73110I, 73110I-6 (2009). [CrossRef]
  22. E. A. Shaner, A. D. Grine, M. C. Wanke, M. Lee, J. L. Reno, and S. J. Allen, “Far-Infrared spectrum analysis using plasmon modes in a quantum-well transistor,” IEEE Photon. Technol. Lett.18(18), 1925–1927 (2006). [CrossRef]
  23. T. A. Elkhatib, V. Y. Kachorovskii, W. J. Stillman, S. Rumyantsev, X.-C. Zhang, and M. S. Shur, “Terahertz response of field-effect transistors in saturation regime,” Appl. Phys. Lett.98(24), 243505 (2011).
  24. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetor, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors,” Appl. Phys. Lett.89(13), 131926 (2006). [CrossRef]
  25. F. Teppe, M. Orlov, A. E. I. Fatimy, A. Tiberj, W. Knap, J. Torres, V. Gavrilenko, A. Shchepetov, Y. Roelens, and S. Bollaert, “Room temperature tunable detection of subterahertz radiation by plasma waves in nanometer InGaAs transistors,” Appl. Phys. Lett.89(22), 222109 (2006). [CrossRef]
  26. A. V. Muravjov, D. B. Veskler, V. V. Popov, O. V. Polischuk, N. Pala, X. Hu, R. Gaska, H. Saxena, R. E. Peale, and M. S. Shur, “Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures,” Appl. Phys. Lett.96(4), 042105 (2010). [CrossRef]
  27. L. Wang, X. S. Chen, W. D. Hu, and W. Lu, “Spectrum analysis of 2D plasmon in GaN-based high electron mobility transistors,” IEEE J. Sel. Top. Quantum Electron.19(1), 8400507–8400513 (2013). [CrossRef]
  28. A. M. Dabiran, A. M. Wowchak, A. Osinsky, J. Xie, B. Hertog, B. Cui, D. C. Look, and P. P. Chow, “Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures,” Appl. Phys. Lett.93(8), 082111 (2008). [CrossRef]
  29. Y. Cao and D. Jena, “High mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions,” Appl. Phys. Lett.90(18), 182112 (2007). [CrossRef]
  30. T. Zimmermann, D. Deen, Y. Cao, J. Simon, P. Fay, D. Jena, and H. G. Xing, “AlN/GaN isulated-gate HEMTs with 2.3A/mm output current and 480 mS/mm transconductance,” IEEE Electron Device Lett.29(7), 661–664 (2008). [CrossRef]
  31. S. Taking, D. MacFarlane, and E. Wasige, “AlN/GaN MOS-HEMTs with thermally grown Al2O3 passivation,” IEEE Trans. Electron. Dev.58(5), 1418–1424 (2011). [CrossRef]
  32. M. Dyakonov and M. S. Shur, “Current instability and plasma waves generation in ungated two-dimensional electron layers,” Appl. Phys. Lett.87(11), 111501 (2005). [CrossRef]
  33. L. Wang, X. S. Chen, W. D. Hu, J. Wang, X.-D. Wang, and W. Lu, “The plasmonic resonant absorption in GaN double-channel high electron mobility transistors,” Appl. Phys. Lett.99(6), 063502 (2011). [CrossRef]
  34. L. Wang, X. S. Chen, W. D. Hu, and W. Lu, “The role of ultrathin AlN barrier in the reduction in the hot electron and self-heating effects for GaN-based double-heterojunction high electron mobility transistors,” J. Appl. Phys.108(5), 054501 (2010). [CrossRef]
  35. T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, “A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure,” Opt. Express14(11), 4815–4825 (2006). [CrossRef] [PubMed]
  36. V. V. Popov, O. V. Polischuk, W. Knap, and A. El Fatimy, “Broadening of the plasmon resonance due to plasmon-plasmon intermode scattering in terahertz high-electron-mobility transistors,” Appl. Phys. Lett.93(26), 263503 (2008). [CrossRef]
  37. V. V. Popov, D. V. Fateev, O. V. Polischuk, and M. S. Shur, “Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate,” Opt. Express18(16), 16771–16776 (2010). [CrossRef] [PubMed]
  38. L. Wang, W. D. Hu, J. Wang, J. Wang, X. D. Wang, S. W. Wang, X. S. Chen, and W. Lu, “Plasmon resonant excitation in grating-gated AlN barrier transistors at terahertz frequency,” Appl. Phys. Lett.100(12), 123501 (2012). [CrossRef]
  39. V. V. Popov, O. V. Polishchuk, and W. Knap, “Plasmon-plasmon scattering and giant broadening of the gated plasmon resonance line in a nanometric heterotransistor with a 2D electron channel,” Bull. Russ. Acad. Sci., Physics73(1), 84–87 (2009). [CrossRef]
  40. A. Satou, V. Ryzhii, and A. Chaplik, “Plasma oscillations in two-dimensional electron channel with nonideally conducting side contacts,” J. Appl. Phys.98(3), 034502 (2005). [CrossRef]
  41. H. Marinchio, J.-F. Millithaler, C. Palermo, L. Varani, L. Reggiani, P. Shiktorov, E. Starikov, and V. Gružinskis, “Plasma resonances in a gated semiconductor slab of arbitrary thickness,” Appl. Phys. Lett.98(20), 203504 (2011). [CrossRef]
  42. M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B61(12), 8187–8201 (2000). [CrossRef]
  43. V. V. Popov, G. M. Tsymbalov, and N. J. M. Horing, “Anticrossing of plasmon resonances and giant enhancement of interlayer terahertz electric field in an asymmetric bilayer of two-dimensional electron strips,” J. Appl. Phys.99(12), 124303 (2006). [CrossRef]
  44. D. V. Fateev, V. V. Popov, and M. S. Shur, “Transformation of the plasmon spectrum in a grating-gate transistor structure with spatially modulated two-dimensional electron channel,” Semiconductors44(11), 1406–1413 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited