OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10841–10849

Generation of polarization-entangled photon pairs in a Bragg reflection waveguide

A. Vallés, M. Hendrych, J. Svozilík, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10841-10849 (2013)
http://dx.doi.org/10.1364/OE.21.010841


View Full Text Article

Enhanced HTML    Acrobat PDF (1052 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate experimentally that spontaneous parametric down-conversion in an AlxGa1−xAs semiconductor Bragg reflection waveguide can make for paired photons highly entangled in the polarization degree of freedom at the telecommunication wavelength of 1550 nm. The pairs of photons show visibility higher than 90% in several polarization bases and violate a Clauser-Horne-Shimony-Holt Bell-like inequality by more than 3 standard deviations. This represents a significant step toward the realization of efficient and versatile self pumped sources of entangled photon pairs on-chip.

© 2013 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: March 13, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 12, 2013
Published: April 26, 2013

Citation
A. Vallés, M. Hendrych, J. Svozilík, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres, "Generation of polarization-entangled photon pairs in a Bragg reflection waveguide," Opt. Express 21, 10841-10849 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10841


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, 2000).
  2. D. Bouwmeester, A. K. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information, (Springer Verlag, 2000). [CrossRef]
  3. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons,” Phys. Rev. Lett.103, 013601 (2009). [CrossRef] [PubMed]
  4. J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Optics56, 227–331 (2011). [CrossRef]
  5. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and Valerio Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012). [CrossRef] [PubMed]
  6. K. Banaszek, A. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett.26, 1367–1369 (2001). [CrossRef]
  7. M. Fiorentino, S. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express15, 7479–7488 (2007). [CrossRef] [PubMed]
  8. A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett.32, 2399–2401 (2007). [CrossRef] [PubMed]
  9. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express17, 9460–9467 (2009). [CrossRef] [PubMed]
  10. J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett.35, 2334–2336 (2010). [CrossRef] [PubMed]
  11. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic Source of Photon Pairs,” Phys. Rev. Lett.108, 153605 (2012). [CrossRef] [PubMed]
  12. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett.34, 3734–3736 (2009). [CrossRef] [PubMed]
  13. B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity Parametric Fluorescence in Diode Lasers,” in CLEO: 2011 Postdeadline Papers (Optical Society of America, Washington, DC, 2011), Report No. PDPA3.
  14. P. Abolghasem, J. Han, D. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic Photonics Using Second-Order Optical Nonlinearities in Multilayer-Core Bragg Reflection Waveguides,” IEEE J. Selected Topics Quantum Electron.2, 812–825 (2012). [CrossRef]
  15. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express14, 1243–1252 (2006). [CrossRef] [PubMed]
  16. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett.34, 2000–2002 (2009). [CrossRef] [PubMed]
  17. J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express, 19, 3115–3123 (2011). [CrossRef] [PubMed]
  18. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett.23, 880 (1969). [CrossRef]
  19. N. Gisin, “Bell’s inequality holds for all non-product states,” Phys. Lett. A154, 201–202 (1991). [CrossRef]
  20. A. Fine, “Hidden Variables, Joint Probability, and the Bell Inequalities,” Phys. Rev. Lett.48, 291 (1982). [CrossRef]
  21. N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep.2, 817 (2012). [CrossRef] [PubMed]
  22. A. Orieux, A. Eckstein, A. Lemaitre, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Bell states generation on a III–V semiconductor chip at room temperature,” arXiv:1301.1764 (2013).
  23. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Tech. Lett.21, 1462 (2009). [CrossRef]
  24. S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A85, 013838 (2012). [CrossRef]
  25. The chosen polarization states mirror the experimental arrangement implemented.
  26. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett.75, 4337 (1995). [CrossRef] [PubMed]
  27. J. Svozilík, M. Hendrych, and J. P. Torres, “Bragg reflection waveguide as a source of wavelength-multiplexed polarization-entangled photon pairs,” Opt. Express20, 15015–15023 (2012). [CrossRef] [PubMed]
  28. D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett.37, 1481–1483 (2012). [CrossRef] [PubMed]
  29. S. V. Zhukovsky, L. G. Helt, P. Abolghasem, D. Kang, J. E. Sipe, and A. S. Helmy, “Bragg reflection waveguides as integrated sources of entangled photon pairs,” J. Opt. Soc. Am. B29, 2516–2523 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited