OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10867–10877

Antenna array connections for efficient performance of distributed microbolometers in the IR

Manuel Silva-López, Alexander Cuadrado, Nuria Llombart, and Javier Alda  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10867-10877 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical antennas and resonant structures have been extensively investigated due to its potential for electromagnetic detection and energy harvesting applications. However their integration into large arrays and the role of connection lines between individual antennas has drawn little attention. This is necessary if we want to exploit its potential constructively and to enable economical large-scale fabrication. In this contribution we point out some features that an efficient antenna array should address. Experimental measurements on aluminum microbolometers are compared to electromagnetic simulations, it is shown that the finite size of a real array and the interconnection lines interact and affect the global performance.

© 2013 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(230.3990) Optical devices : Micro-optical devices
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: March 6, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 12, 2013
Published: April 26, 2013

Manuel Silva-López, Alexander Cuadrado, Nuria Llombart, and Javier Alda, "Antenna array connections for efficient performance of distributed microbolometers in the IR," Opt. Express 21, 10867-10877 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. L. Hwang, S. E. Schwarz, and D. B. Rutledge, “Microbolometers for infrared detection,” Appl. Phys. Lett. 34, 773–776 (1979). [CrossRef]
  2. R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, “Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques,” Def. Sci. J. 59, 580–590 (2009).
  3. C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubhl, and H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999). [CrossRef]
  4. J. Alda, J. M. Rico-García, J. M. Lopez Alonso, and G. D. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005). [CrossRef]
  5. F. J. Gonzalez, B. Ilic, J. Alda, and G. D. Boreman, “Antenna coupled infrared detectors for Imaging applications,” IEEE J. Sel. Top. Quantum Electron. 11, 117–120 (2005). [CrossRef]
  6. J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013). [CrossRef] [PubMed]
  7. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nannoantenna electromagnetic collectors,” J. Sol. Energy Eng. 132, 011014 (2010). [CrossRef]
  8. B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, “Effect of read-out interconnects on the polarization characteristics of nanoantennas for the long-wave infrared regime,” IEEE Trans. Nanotechnology, 12, 270–275 (2013). [CrossRef]
  9. P. Krenz, B. Lail, and G. Boreman, “Calibration of lead-line response contribution in measured radiation patterns of IR dipole arrays,” J. Sel. Topics in Quantum Electron. 17, 218–221 (2010). [CrossRef]
  10. T. Mandviwala, B. Lail, and G. Boreman, “Vertical-Via Interconnection for Infrared Antennas,” J. Vac. Sci. Technol. B, 24, 612–615 (2006). [CrossRef]
  11. M. Silva-López, J. M. Rico-Garcia, and J. Alda, “Measurement limitations in knife-edge tomographic phase retrieval of focused IR laser beams,” Opt. Express 20, 23875–23886 (2012). [CrossRef] [PubMed]
  12. F. J. Gonzalez, M. A. Gritz, C. Fumeaux, and G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared and Millimeter Waves 23, 785–797 (2002). [CrossRef]
  13. J. Alda, C. Fumeaux, L. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two dimensional spatial response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999). [CrossRef]
  14. A. Cuadrado, F. J. Gonzalez, J. Agustí, and J. Alda, “Material dependence of the distributed bolometric effect in resonant metallic nanostructures,” Proc. SPIE 8457, 845724 (2012). [CrossRef]
  15. J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, and G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000). [CrossRef]
  16. F. J. Gonzalez, C. S. Ashley, P. G. Clem, and G. D. Boreman, “Antenna-coupled microbolometer arrays with aerogel thermal isolation,” Infrared Phys. Technol. 45, 47–51 (2004). [CrossRef]
  17. J. Agustí, A. Cuadrado, J. C. Martínez-Antón, J. Alda, and G. Abadal, “An analytical model for the opto-thermomechanical conversion mechanisms in a MOEMS based energy harvester,” Proc. SPIE 8463, 846313 (2012). [CrossRef]
  18. A. Cuadrado, J. Alda, and F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012). [CrossRef]
  19. B. Berland and ITN Energy Systems, Inc and National Renewable Energy Laboratory (U.S.), “Photovoltaic technologies beyond the horizon: Optical rectenna solar cell,” National Renewable Energy Laboratory, (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited