OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10878–10885

Goos-Hänchen shifts in harmonic generation from metals

V. J. Yallapragada, Achanta Venu Gopal, and G. S. Agarwal  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10878-10885 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first calculation of the Goos-Hänchen shifts in the context of the nonlinear generation of fields. We specifically concentrate on shifts of second harmonic generated at metallic surfaces. At metallic surfaces the second harmonic primarily arises from discontinuities of the field at surfaces which not only result in large harmonic generation but also in significant Goos-Hänchen shifts of the generated second harmonic. Our results can be extended to other shifts like angular shifts and Fedorov-Imbert shifts.

© 2013 OSA

OCIS Codes
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: March 20, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: April 19, 2013
Published: April 26, 2013

V. J. Yallapragada, Achanta Venu Gopal, and G. S. Agarwal, "Goos-Hänchen shifts in harmonic generation from metals," Opt. Express 21, 10878-10885 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. (Berlin)436(7-8), 333–346 (1947). [CrossRef]
  2. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. (Berlin)437(1-2), 87–102 (1948). [CrossRef]
  3. B. R. Horowitz and T. Tamir, “Lateral displacement of a light beam at a dielectric interface,” J. Opt. Soc. Am.61(5), 586 (1971). [CrossRef]
  4. W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A25(4), 2099–2101 (1982). [CrossRef]
  5. H. G. L. Schwefel, W. Köhler, Z. H. Lu, J. Fan, and L. J. Wang, “Direct experimental observation of the single reflection optical Goos-Hänchen shift,” Opt. Lett.33(8), 794–796 (2008). [CrossRef] [PubMed]
  6. M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express15(24), 15928–15934 (2007). [CrossRef] [PubMed]
  7. C. Bonnet, D. Chauvat, O. Emile, F. Bretenaker, A. Le Floch, and L. Dutriaux, “Measurement of positive and negative Goos-Hänchen effects for metallic gratings near Wood anomalies,” Opt. Lett.26(10), 666–668 (2001). [CrossRef] [PubMed]
  8. M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics3(6), 337–340 (2009). [CrossRef]
  9. J. He, J. Yi, and S. He, “Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index,” Opt. Express14(7), 3024–3029 (2006). [CrossRef] [PubMed]
  10. F. I. Fedorov, “K teorii polnovo otrazenija,” Dokl. Akad. Nauk. SSR105, 465 (1955).
  11. C. Imbert, “Calculation and experimental proof of the transverse shift Induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields5(4), 787–796 (1972). [CrossRef]
  12. O. de Beauregard and C. Imbert, “Quantized longitudinal and transverse shifts associated with total internal reflection,” Phys. Rev. D Part. Fields7(12), 3555–3563 (1973). [CrossRef]
  13. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008). [CrossRef] [PubMed]
  14. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science319(5864), 787–790 (2008). [CrossRef] [PubMed]
  15. N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett.36(16), 3200–3202 (2011). [CrossRef] [PubMed]
  16. D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett.102(12), 123903 (2009). [CrossRef] [PubMed]
  17. L. Allen, S. M. Barnett, and M. J. Padgett, eds., Optical Angular Momentum (Taylor & Francis, 2003).
  18. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon.3(2), 161 (2011). [CrossRef]
  19. A. Dogariu and C. Schwartz, “Conservation of angular momentum of light in single scattering,” Opt. Express14(18), 8425–8433 (2006). [CrossRef] [PubMed]
  20. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev.128(2), 606–622 (1962). [CrossRef]
  21. S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev.140(6A), A2020–A2030 (1965). [CrossRef]
  22. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968). [CrossRef]
  23. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B Condens. Matter33(12), 8254–8263 (1986). [CrossRef] [PubMed]
  24. C. F. Li, “Unified theory for Goos-Haenchen and Imbert-Fedorov effects,” Phys. Rev. A76(1), 013811 (2007). [CrossRef]
  25. G. S. Agarwal and S. S. Jha, “Surface-enhanced second-harmonic generation at a metallic grating,” Phys. Rev. B26(2), 482–496 (1982). [CrossRef]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  27. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B Condens. Matter35(3), 1129–1141 (1987). [CrossRef] [PubMed]
  28. W. L. Schaich and B. S. Mendoza, “simple model of second-harmonic generation,” Phys. Rev. B Condens. Matter45(24), 14279–14292 (1992). [CrossRef] [PubMed]
  29. B. S. Mendoza and W. L. Mochán, “Exactly solvable model of surface second-harmonic generation,” Phys. Rev. B Condens. Matter53(8), 4999–5006 (1996). [CrossRef] [PubMed]
  30. X. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett.89(26), 261108 (2006). [CrossRef]
  31. M. Kumari and S. Dutta Gupta, “Positive and negative Giant Goos--Hänchen shift in a Near-symmetric layered medium for illumination from opposite ends,” Opt. Commun.285(5), 617–620 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited