OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10886–10896

Efficient perfectly vertical fiber-to-chip grating coupler for silicon horizontal multiple slot waveguides

John Covey and Ray T. Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10886-10896 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Horizontal multiple slot waveguides of polysilicon and silicon nanocrystalline oxide were grating coupled to a surface normal fiber array. Measurements yielded a coupling efficiency of 60% per grating. The fabrication-tolerant, four-stage grating design was genetically evolved from a random seed without starting from first-principle design. Theoretical coupling efficiency was 68% and was re-designed to 63% after accommodating all sources of fabrication error. To our knowledge, this is the first implementation of a purely polysilicon and silicon nanocrystalline oxide slot waveguide platform.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: March 21, 2013
Revised Manuscript: April 19, 2013
Manuscript Accepted: April 23, 2013
Published: April 26, 2013

John Covey and Ray T. Chen, "Efficient perfectly vertical fiber-to-chip grating coupler for silicon horizontal multiple slot waveguides," Opt. Express 21, 10886-10896 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  2. R. Guider, N. Daldosso, A. Pitanti, E. Jordana, J. M. Fedeli, and L. Pavesi, “NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators,” Opt. Express17(23), 20762–20770 (2009). [CrossRef] [PubMed]
  3. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express17(3), 1527–1534 (2009). [CrossRef] [PubMed]
  4. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett.86(8), 081101 (2005). [CrossRef]
  5. R. Sun, P. Dong, N. Feng, C.- Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides:optical transmission at λ = 1550 nm,” Opt. Express15(26), 17967 (2007). [CrossRef]
  6. A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Martí, and R. Spano, “Ultrafast All-Optical Switching in a Silicon-Nanocrystal-Based Silicon Slot Waveguide at Telecom Wavelengths,” Nano Lett.10(4), 1506–1511 (2010). [CrossRef] [PubMed]
  7. R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Giordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm,” Opt. Express17(5), 3941–3950 (2009). [CrossRef] [PubMed]
  8. J. Shainline and J. Xu, “Silicon as an emissive optical medium,” Laser Photon. Rev.1(4), 334–348 (2007). [CrossRef]
  9. J. V. Galan, P. Sanchis, J. Blasco, A. Martinez, and J. Martí, “High efficiency fiber coupling to silicon sandwiched slot waveguides,” Opt. Commun.281(20), 5173–5176 (2008). [CrossRef]
  10. G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-Based Optical Fiber Interfaces for Silicon-on-Insulator Photonic Integrated Circuits” IEEE J Sel. Top. Quantum Electron.17(3), 571–580 (2011). [CrossRef]
  11. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004). [CrossRef] [PubMed]
  12. M. Taillaert, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express19(4), 3592–3598 (2011). [CrossRef] [PubMed]
  13. D. Aillaerta, F. Van Laere, M. Yre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides” Jap. J. Appl. Phys.45(8A), 6071–6077 (2006). [CrossRef]
  14. G. Roelkens, D. Vermeulen, D. VanThourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J.-M. Fédéli, “High Efficiency Diffractive Grating Couplers for Interfacing a Single Mode Optical Fiber with a Nanophotonic Silicon-on-Insulator Waveguide Circuit,” Appl. Phys. Lett.92(13), 131101 (2008). [CrossRef]
  15. C. Xiong, W. H. P. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express18(20), 20690–20698 (2010). [CrossRef] [PubMed]
  16. J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides,” IEEE Photon. Technol. Lett.20(12), 985–987 (2008). [CrossRef]
  17. N. N. Feng, J. Michel, and L. C. Kimerling, “Optical Field Concentration in Low-Index Waveguides,” IEEE J. Quantum Electron.42(9), 883–888 (2006). [CrossRef]
  18. B. Wang, J. Jiang, and G. Nordin, “Compact slanted grating couplers,” Opt. Express12(15), 3313–3326 (2004). [CrossRef] [PubMed]
  19. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002). [CrossRef]
  20. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett.32(11), 1495–1497 (2007). [CrossRef] [PubMed]
  21. H. Yamada, M. Nozawa, M. Kinoshita, and K. Ohashi, “Vertical-coupling optical interface for on-chip optical interconnection,” Opt. Express19(2), 698–703 (2011). [CrossRef] [PubMed]
  22. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express14(24), 11622–11630 (2006). [CrossRef] [PubMed]
  23. D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989).
  24. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly Efficient Nonuniform Grating Coupler for Silicon-on-Insulator Nanophotonic Circuits,” Opt. Lett.35(8), 1290–1292 (2010). [CrossRef] [PubMed]
  25. D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, “Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration,” Opt. Express20(19), 21722–21728 (2012). [CrossRef] [PubMed]
  26. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001). [CrossRef]
  27. J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J.-P. Hugonin, and R. M. De La Rue, “Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron.34(5-6), 455–470 (2002). [CrossRef]
  28. T. Suhara and H. Nishihara, “Integrated Optics Components and Devices Using Periodic Structures,” IEEE J. Quantum Electron.22(6), 845–867 (1986). [CrossRef]
  29. R. Emmons and D. Hall, “Buried-Oxide Silicon-on-Insulator Structures” lEEE J. Quantum Electron.28(1), 164 (1992).
  30. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit” presented at Lasers and Electro-Optics/International Quantum Electronics Conference, Munich, Germany (2009). [CrossRef]
  31. J. Goodman, Introduction to Fourier Optics (McGraw Hill, 1996), Chap. 9.
  32. A. Martinez, S. Hernandez, P. Pellegrino, O. Jambois, P. Miska, M. Grun, H. Rinnert, M. Vergnat, V. Izquierdo-Roca, J. M. Fedeli, and B. Garrido, “Comparative study of the nonlinear optical properties of Si nanocrystals fabricated by e-beam evaporation, PECVD or LPCVD,” Phys. Status Solidi. C8(3), 969–973 (2011). [CrossRef]
  33. K. Koukos, E. B. Edel-Pereira, O. G. Authier-Lafaye, E. Scheid, L. Bouscayrol, B. F. Ranc, P. Arguel, S. Bonnefont, F. Lozes-Dupuy, and G. Sarrabayrous, “Effect of Annealing Conditions on Photoluminescence Properties of Low-Pressure Chemical Vapour Deposition-Grown Silicon Nanocrystals” Jap. J. Appl. Phys.47(1), 130–132 (2008). [CrossRef]
  34. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low Loss (~6.45dB/cm) Sub-Micron Polycrystalline Silicon Waveguide Integrated with Efficient SiON Waveguide Coupler,” Opt. Express16(9), 6425 (2008). [CrossRef]
  35. L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength” J Electron. Mater.29(12), 1380 (2000).
  36. E. Ibok and S. Garg, “A Characterization of the Effect of Deposition Temperature on Polysilicon Properties,” J. Electrochem. Soc.140(10), 2927–2937 (1993). [CrossRef]
  37. C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B25(6), 2658–2661 (2007). [CrossRef]
  38. L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express19(7), 6284–6289 (2011). [CrossRef] [PubMed]
  39. P. Pellegrino, B. Garrido, C. Garcia, J. Arbiol, J. R. Morante, M. Melchiorri, N. Daldosso, L. Pavesi, E. Schied, and G. Sarrabayrouse, “Low-loss rib waveguides containing Si nanocrystals embedded in SiO2,” J. Appl. Phys.97(7), 074312 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited