OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10903–10916

Efficient wavelength multiplexers based on asymmetric response filters

Mark T. Wade and Miloš A. Popović  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10903-10916 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose integrated photonic wavelength multiplexers based on serially cascaded channel add-drop filters with an asymmetric frequency response. By utilizing the through-port rejection of the previous channel to advantage, the asymmetric response provides optimal rejection of the adjacent channels at each wavelength channel. We show theoretically the basic requirements to realize an asymmetric filter response, and propose and evaluate the possible implementations using coupled resonators. For one implementation, we provide detailed design formulas based on a coupled-mode theory model, and more generally we provide broad guidelines that enumerate all structures that can provide asymmetric passbands in the context of a pole-zero design approach to engineering the device response. Using second-order microring resonator filter stages as an example, we show that the asymmetric multiplexer can provide 2.4 times higher channel packing (bandwidth) density than a multiplexer using the same order stages (number of resonators) using conventional all-pole maximally-flat designs. We also address the sensitivities and constraints of various implementations of our proposed approach, as it affects their applicability to CMOS photonic interconnects.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: February 27, 2013
Revised Manuscript: April 20, 2013
Manuscript Accepted: April 22, 2013
Published: April 26, 2013

Mark T. Wade and Miloš A. Popović, "Efficient wavelength multiplexers based on asymmetric response filters," Opt. Express 21, 10903-10916 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express18, 3059–3070 (2010). [CrossRef] [PubMed]
  2. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19, 20435–20443 (2011). [CrossRef] [PubMed]
  3. J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20, 26411–26423 (2012). [CrossRef] [PubMed]
  4. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19, 17758–17765 (2011). [CrossRef] [PubMed]
  5. J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popović, H. Li, J. Sun, T. Bonifield, R. Hollingsworth, F. X. Kärtner, H. I. Smith, V. Stojanović, and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express19, 2335–2346 (2011). [CrossRef] [PubMed]
  6. J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express20, 12222–12232 (2012). [CrossRef] [PubMed]
  7. B. Moss, C. Sun, M. Georgas, J. Shainline, J. Orcutt, J. Leu, M. Wade, H. Li, R. Ram, M. Popovic, and V. Stojanovic, “A 1.23 pJ/bit 2.5Gb/s monolithically-integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in International Solid-State Circuits Conference (2013), pp. 126–127.
  8. S. Beamer, K. Asanović, C. Batten, A. Joshi, and V. Stojanović, “Designing multi-socket systems using silicon photonics,” in Proceedings of the 23rd International Conference on Supercomputing (ACM, New York, NY, USA, 2009), ICS ’09, pp. 521–522. [CrossRef]
  9. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE97, 1166–1185 (2009). [CrossRef]
  10. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” Micro, IEEE29, 8–21 (2009). [CrossRef]
  11. A. Prabhu and V. Van, “Realization of asymmetric optical filters using asynhcronous coupled-microring resonators,” Opt. Express15, 9645–9658 (2007). [CrossRef] [PubMed]
  12. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999). [CrossRef]
  13. M. Popovic, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2007).
  14. M. Popovic, “Sharply-defined optical filters and dispersionless delay lines based on loop-coupled resonators and ‘negative’ coupling,” in IEEE Conference on Lasers and Electro-Optics (2007), pp. 1–2. Paper CthP6.
  15. R. Kurzrok, “General three-resonator filters in waveguide,” IEEE Trans. Microwave Theory Tech.14, 46–47 (1966). [CrossRef]
  16. H. Haus and W. Huang, “Coupled-mode theory,” Proceedings of the IEEE79, 1505–1518 (1991). [CrossRef]
  17. R. Collin, Foundations for Microwave Engineering, IEEE Press Series on Electromagnetic Wave Theory (John Wiley & Sons, 2001). [CrossRef]
  18. B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol.15, 998–1005 (1997). [CrossRef]
  19. H. A. Haus, Waves and Fields in Optoelectronics, Solid state physical electronics series (Prentice-Hall, 1984).
  20. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” IEEE J. Lightwave Technol.20, 296 (2002). [CrossRef]
  21. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7, 1447–1449 (1995). [CrossRef]
  22. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004). [CrossRef]
  23. B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett.25, 344–346 (2000). [CrossRef]
  24. S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett.11, 691–693 (1999). [CrossRef]
  25. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96, 123901 (2006). [CrossRef] [PubMed]
  26. N. Sherwood-Droz, H. Wang, L. Chen, B. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4×4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express16, 15915–15922 (2008). [CrossRef] [PubMed]
  27. S. Emelett and R. Soref, “Synthesis of dual-microring-resonator cross-connect filters,” Opt. Express13, 4439–4456 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited