OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10917–10923

Electrically driven nanopillars for THz quantum cascade lasers

M. I. Amanti, A. Bismuto, M. Beck, L. Isa, K. Kumar, E. Reimhult, and J. Faist  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10917-10923 (2013)
http://dx.doi.org/10.1364/OE.21.010917


View Full Text Article

Enhanced HTML    Acrobat PDF (1333 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we present a rapid and parallel process for the fabrication of large scale arrays of electrically driven nanopillars for THz quantum cascade active media. We demonstrate electrical injection of pillars of 200 nm diameter and 2 µm height, over a surface of 1 mm2. THz electroluminescence from the nanopillars is reported. This result is a promising step toward the realization of zero-dimensional structure for terahertz quantum cascade lasers.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(220.4241) Optical design and fabrication : Nanostructure fabrication
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 28, 2013
Revised Manuscript: April 1, 2013
Manuscript Accepted: April 17, 2013
Published: April 26, 2013

Citation
M. I. Amanti, A. Bismuto, M. Beck, L. Isa, K. Kumar, E. Reimhult, and J. Faist, "Electrically driven nanopillars for THz quantum cascade lasers," Opt. Express 21, 10917-10923 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10917


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  3. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  4. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter44(24), 13556–13572 (1991). [CrossRef] [PubMed]
  5. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  6. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science327(5972), 1495–1497 (2010). [CrossRef] [PubMed]
  7. J. N. Randal, M. A. Reed, R. J. Matyi, and T. M. Moore, “Nanostructure fabrication of zero‐dimensional quantum dot diodes,” J. Vac. Sci. Technol. B6(6), 1861–1865 (1988). [CrossRef]
  8. H. Sakaki, “Quantum wires, quantum boxes and related structures: physics, device potentials and structural requirements,” Surf. Sci.267(1-3), 623–629 (1992). [CrossRef]
  9. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of three-dimensional quantum-box Lasers,” IEEE J. Quantum Electron.22(9), 1915–1921 (1986). [CrossRef]
  10. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002). [CrossRef] [PubMed]
  11. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics3(1), 41–45 (2009). [CrossRef]
  12. N. S. Wingreen and C. A. Stafford, “Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser,” IEEE J. Quantum Electron.33(7), 1170–1173 (1997). [CrossRef]
  13. C. F. Hsu, J. S. O, P. O. Zory, and D. Botez, “Intersubband quantum-box semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron.6(3), 491–503 (2000).
  14. D. Smirnov, C. Becker, O. Drachenko, V. V. Rylkov, H. Page, J. Leotin, and C. Sirtori, “Control of electron-optical-phonon scattering rates in quantum box cascade lasers,” Phys. Rev. B66(12), 121305 (2002). [CrossRef]
  15. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012). [CrossRef] [PubMed]
  16. M. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. Khanna, A. Davies, E. Linfield, and F. Capasso, “High-Temperature Operation of Terahertz Quantum Cascade Laser Sources,” IEEE J. Sel. Top. Quantum Electron.15(3), 952–967 (2009). [CrossRef]
  17. A. Tredicucci, “Quantum dots: long life in zero dimensions,” Nat. Mater.8(10), 775–776 (2009). [CrossRef] [PubMed]
  18. G. Sun, R. A. Soref, and J. B. Khurgin, “Active region design of a terahertz GaN/Al0.15Ga0.85N quantum cascade laser,” Superlattices Microstruct.37(2), 107–113 (2005). [CrossRef]
  19. E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winnerl, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nat. Mater.8(10), 803–807 (2009). [CrossRef] [PubMed]
  20. V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, “Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes,” Appl. Phys. Lett.101(26), 261113 (2012). [CrossRef]
  21. W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, “Photonic crystal light-emitting diodes fabricated by microsphere lithography,” Nanotechnology19(25), 255302 (2008). [CrossRef] [PubMed]
  22. M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys.11(12), 125022 (2009). [CrossRef]
  23. Y. Chassagneux, J. Palomo, R. Colombelli, S. Barbieri, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Low Threshold THz QC lasers with thin active regions,” El. Lett.43(5), 41–42 (2007). [CrossRef]
  24. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80(17), 3060 (2002). [CrossRef]
  25. C. L. Cheung, R. J. Nikolic, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology17(5), 1339–1343 (2006). [CrossRef]
  26. L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle lithography from colloidal self-assembly at liquid-liquid interfaces,” ACS Nano4(10), 5665–5670 (2010). [CrossRef] [PubMed]
  27. F. Castellano, A. Bismuto, M. I. Amanti, R. Terazzi, M. Beck, S. Blaser, A. Bachle, and J. Faist, “Loss mechanisms of quantum cascade lasers operating close to optical phonon frequencies,” J. Appl. Phys.109(10), 102407 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited