OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10924–10941

Brillouin spectroscopy of a novel baria-doped silica glass optical fiber

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10924-10941 (2013)
http://dx.doi.org/10.1364/OE.21.010924


View Full Text Article

Enhanced HTML    Acrobat PDF (2820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Presented here for the first time to the best of our knowledge is a detailed Brillouin spectroscopic study of novel, highly-BaO-doped silica glass optical fibers. The fibers were fabricated utilizing a molten-core method and exhibited baria (BaO) concentrations up to 18.4 mole %. Physical characteristics such as mass density, acoustic velocity, visco-elastic damping, and refractive index are determined for the baria component of the bariosilicate system. It is found that, of each of these parameters, only the acoustic velocity is less than that of pure silica. The effect of temperature and strain on the acoustic velocity also is determined by utilizing estimates of the strain- and thermo-optic coefficients. The dependencies are found to have signs opposite to those of silica, thus suggesting both Brillouin-frequency a-thermal and a-tensic binary compositions. Via the estimate of the strain-optic coefficient and data found in the literature, the Pockels’ photoelastic constant p12 is estimated, and both a calculation and measured estimate of the Brillouin gain versus baria content are presented. Such novel fibers incorporating the unique properties of baria could be of great utility for narrow linewidth fiber lasers, high power passive components (such as couplers and combiners), and Brillouin-based sensor systems.

© 2013 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2290) Materials : Fiber materials
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 4, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: April 23, 2013
Published: April 26, 2013

Citation
P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, "Brillouin spectroscopy of a novel baria-doped silica glass optical fiber," Opt. Express 21, 10924-10941 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10924


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. K. Jen, “Similarities and differences between fiber acoustics and fiber optics,” Proceedings of the IEEE Ultrasonics Symposium, (IEEE, 1985), pp. 1128 – 1133.
  2. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” CLEO/QELS Technical Digest, pp. 1984–1986, (2005), paper CThZ3.
  3. M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, D. A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” Optical Fiber Communication Conference, (Optical Society of America, 2006), paper OTuA4. [CrossRef]
  4. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005). [CrossRef] [PubMed]
  5. W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett.32(6), 600–602 (2007). [CrossRef] [PubMed]
  6. P. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE7197, 719710, 719710-10 (2009). [CrossRef]
  7. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012). [CrossRef]
  8. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt.34(30), 6848–6854 (1995). [CrossRef] [PubMed]
  9. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys.105(5), 053110 (2009). [CrossRef]
  10. S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “Reactive molten core fabrication of silicon optical fiber,” Opt. Mater. Express1(6), 1141–1149 (2011). [CrossRef]
  11. P. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett.45(5), 256–257 (2009). [CrossRef]
  12. P. Dragic, “The acoustic velocity of Ge-doped silica fibers: a comparison of two models,” Int. J. Appl. Glass Sci.1(3), 330–337 (2010). [CrossRef]
  13. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express2(11), 1641–1654 (2012). [CrossRef]
  14. M. Huntelaar and E. Cordfunke, “The ternary system BaSiO3-SrSiO3-SiO2,” J. Nucl. Mater.201, 250–253 (1993). [CrossRef]
  15. A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol.28(4), 360–364 (2010). [CrossRef]
  16. P.-C. Law, Y.-S. Liu, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express1(4), 686–699 (2011). [CrossRef]
  17. P.-C. Law, A. Croteau, and P. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express2(4), 391–404 (2012). [CrossRef]
  18. P. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B26(8), 1614–1620 (2009). [CrossRef]
  19. A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol.6(1), 17–20 (1988). [CrossRef]
  20. P. Eskola, “The silicates of strontium and barium,” Am. J. Sci.4(23), 331–375 (1922). [CrossRef]
  21. J. Greig, “Immiscibility in silicate melts,” Am. J. Sci.13(73), 1–44 (1927). [CrossRef]
  22. T. Seward, D. Uhlmann, and D. Turnbull, “Phase separation in the system BaO-SiO2,” J. Am. Ceram. Soc.51(5), 278–285 (1968). [CrossRef]
  23. T. Seward, D. Uhlmann, and D. Turnbull, “Development of two-phase structure in glasses with special reference to the system BaO-SiO2,” J. Am. Ceram. Soc.51(11), 634–642 (1968). [CrossRef]
  24. H.-R. Wang, “Graded-index (GRIN) lenses by slurry-based three-dimensional printing (S-3DPTM),” PhD Dissertation, Massachusetts Institute of Technology (2005).
  25. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc.76(3), 712–716 (1993). [CrossRef]
  26. K.-O. Park and J. M. Sivertsen, “Temperature dependence of the bulk modulus of BaO single crystals,” J. Am. Ceram. Soc.60(11-12), 537–538 (1977). [CrossRef]
  27. N. Shibata, Y. Azuma, T. Horiguchi, and M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett.13(7), 595–597 (1988). [CrossRef] [PubMed]
  28. M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997). [CrossRef]
  29. P. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fibers,” J. Opt. Soc. Am. B30(2), 244–250 (2013). [CrossRef]
  30. P. Dragic and B. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010). [CrossRef]
  31. P. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol.29(7), 967–973 (2011). [CrossRef]
  32. F. Langenhorst and A. Deutsch, “Shock experiments on pre-heated α- and β-quartz: I. Optical and density data,” Earth Planet. Sci. Lett.125(1-4), 407–420 (1994). [CrossRef]
  33. Z. Shuang and W. Fuquan, “The study on dispersive equation and thermal refractive index coefficient of quartz crystal,” Acta Photon. Sin.35, 1183–1186 (2006).
  34. J. Kushibiki, M. Ohtagawa, and I. Takanaga, “Comparison of acoustic properties between natural and synthetic α-quartz crystals,” J. Appl. Phys.94(1), 295–300 (2003). [CrossRef]
  35. Springer Materials, “The Landolt-Börnstein Database,” http://www.springermaterials.com/docs/pdfs/10681719_257.pdf
  36. C. J. Anderson and E. B. Hensley, “Index of refraction of barium oxide,” J. Appl. Phys.46(1), 443 (1975). [CrossRef]
  37. G. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  38. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt.18(13), 2241–2251 (1979). [CrossRef] [PubMed]
  39. K. Matusita, R. Yokota, T. Kimijima, T. Komatsu, and C. Ihara, “Compositional trends in photoelastic constants of borate glasses,” J. Am. Ceram. Soc.67(4), 261–265 (1984). [CrossRef]
  40. K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in phosphate glasses,” J. Am. Ceram. Soc.68(7), 389–391 (1985). [CrossRef]
  41. M. Guignard and J. W. Zwanziger, “Zero stress-optic barium tellurite glass,” J. Non-Cryst. Solids353(16-17), 1662–1664 (2007). [CrossRef]
  42. K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr.17(6), 788–789 (1964). [CrossRef]
  43. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited