OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10942–10953

Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF

Ka Fai Mak, John C. Travers, Philipp Hölzer, Nicolas Y. Joly, and Philip St. J. Russell  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10942-10953 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An efficient and tunable 176-550 nm source based on the emission of resonant dispersive radiation from ultrafast solitons at 800 nm is demonstrated in a gas-filled hollow-core photonic crystal fiber (PCF). By careful optimization and appropriate choice of gas, informed by detailed numerical simulations, we show that bright, high quality, localized bands of UV light (relative widths of a few percent) can be generated at all wavelengths across this range. Pulse energies of more than 75 nJ in the deep-UV, with relative bandwidths of ~3%, are generated from pump pulses of a few μJ. Excellent agreement is obtained between numerical and experimental results. The effects of positive and negative axial pressure gradients are also experimentally studied, and the coherence of the deep-UV dispersive wave radiation numerically investigated.

© 2013 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Nonlinear Optics

Original Manuscript: March 6, 2013
Revised Manuscript: April 23, 2013
Manuscript Accepted: April 23, 2013
Published: April 26, 2013

Ka Fai Mak, John C. Travers, Philipp Hölzer, Nicolas Y. Joly, and Philip St. J. Russell, "Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF," Opt. Express 21, 10942-10953 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Rines, H. H. Zenzie, R. A. Schwarz, Y. Isyanova, and P. F. Moulton, “Nonlinear conversion of Ti:sapphire laser wavelengths,” IEEE J. Sel. Top. Quantum Electron.1(1), 50–57 (1995). [CrossRef]
  2. C. Homann, P. Lang, and E. Riedle, “Generation of 30 fs pulses tunable from 189 to 240 nm with an all-solid-state setup,” J. Opt. Soc. Am. B29(10), 2765–2769 (2012). [CrossRef]
  3. G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett.30(7), 756–758 (2005). [CrossRef] [PubMed]
  4. R. J. Bartula, J. W. Walewski, and S. T. Sanders, “Generation of ultraviolet broadband light in a single-mode fiber,” Appl. Phys. B84(3), 395–400 (2006). [CrossRef]
  5. S. P. Stark, J. C. Travers, and P. St. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett.37(5), 770–772 (2012). [CrossRef] [PubMed]
  6. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express12(1), 124–135 (2004). [CrossRef] [PubMed]
  7. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett.35(14), 2361–2363 (2010). [CrossRef] [PubMed]
  8. A. V. Husakou and J. Herrmann, “Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,” Phys. Rev. Lett.87(20), 203901 (2001). [CrossRef] [PubMed]
  9. K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Initial steps of supercontinuum generation in photonic crystal fibers,” J. Opt. Soc. Am. B20(9), 1887–1893 (2003). [CrossRef]
  10. A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B19(11), 2567–2572 (2002). [CrossRef]
  11. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett.88(17), 173901 (2002). [CrossRef] [PubMed]
  12. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express14(25), 11997–12007 (2006). [CrossRef] [PubMed]
  13. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express17(12), 9858–9872 (2009). [CrossRef] [PubMed]
  14. J. Cheng, J. H. Lee, K. Wang, C. Xu, K. G. Jespersen, M. Garmund, L. Grüner-Nielsen, and D. Jakobsen, “Generation of Cerenkov radiation at 850 nm in higher-order-mode fiber,” Opt. Express19(9), 8774–8780 (2011). [CrossRef] [PubMed]
  15. G. Chang, L.-J. Chen, and F. X. Kärtner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express19(7), 6635–6647 (2011). [CrossRef] [PubMed]
  16. S.-J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs,” Opt. Express18(6), 5367–5374 (2010). [CrossRef] [PubMed]
  17. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011). [CrossRef] [PubMed]
  18. E. A. J. Marcatili and Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  19. J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett.35(17), 2922–2924 (2010). [CrossRef] [PubMed]
  20. S.-J. Im, A. Husakou, and J. Herrmann, “Guiding properties and dispersion control of kagome lattice hollow-core photonic crystal fibers,” Opt. Express17(15), 13050–13058 (2009). [CrossRef] [PubMed]
  21. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett.11(7), 464–466 (1986). [CrossRef] [PubMed]
  22. V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics47(3), 2073–2082 (1993). [CrossRef] [PubMed]
  23. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995). [CrossRef] [PubMed]
  24. J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun.114(3-4), 321–328 (1995). [CrossRef]
  25. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded Phase Matching and Nonlinear Symmetry Breaking in Fiber Frequency Combs,” Phys. Rev. Lett.109(22), 223904 (2012). [CrossRef] [PubMed]
  26. D. R. Austin, C. M. de Sterke, T. G. Brown, and B. J. Eggleton, “The nonlinear wavenumber in supercontinuum generation,” in Australian Conference on Optical Fibre Technology/Australian Optical Society, 2006. ACOFT/AOS 2006 (2006), p. 137. [CrossRef]
  27. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  28. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B28, A11–A26 (2011). [CrossRef]
  29. C.-M. Chen and P. L. Kelley, “Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis,” J. Opt. Soc. Am. B19(9), 1961–1967 (2002). [CrossRef]
  30. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express19(21), 21018–21027 (2011). [CrossRef] [PubMed]
  31. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A81(1), 013819 (2010). [CrossRef]
  32. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(3), 036604 (2004). [CrossRef] [PubMed]
  33. F. Tani, J. C. Travers, and P. St. J. Russell, in preparation.
  34. L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B77(2-3), 307–311 (2003). [CrossRef]
  35. N. Y. Joly, M. Labat, J. C. Travers, K. F. Mak, F. Tani, G. Gatti, T. Tanikawa, B. De Ninno, F. Mahieu, A. Ciocci, V. Petralia, V. Petrillo, J. V. Rau, and S. Bielawski, “Seeding of SPARC-FEL with a tunable fibre-based source,” in (2012).
  36. K. F. Mak, J. C. Travers, P. Hoelzer, W. Chang, F. Tani, F. Vinzent, N. Joly, and P. St. J. Russell, “Interaction between Kerr and Ionization Induced Nonlinear Fiber Optics,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), p. CM1J.5.
  37. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett.86(11), 111116 (2005). [CrossRef]
  38. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett.27(13), 1180–1182 (2002). [CrossRef] [PubMed]
  39. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  40. M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. St. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett.107(20), 203902 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited