OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10954–10961

Modulation of shape and polarization of beam using a liquid crystal q-plate that is fabricated via photo-alignment

Yao-Han Huang, Shih-Wei Ko, Ming-Shian Li, Shu-Chun Chu, and Andy Y.-G. Fuh  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10954-10961 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A liquid crystal (LC) device, called a “q-plate” (QP), which is based on axially symmetric photo-alignment was investigated. The electrically tunable LC QP device could be modulated to control the shape and polarization of a linearly polarized Gaussian laser beam that propagated through it. The intensity profile and polarization distribution were simulated by MATLAB and 1D-DIMOS. The results of the simulation were consistent with experimental findings. In the fabricated electrically tunable LC QP device, switching between different beam-profile configurations can be realized by applying a voltage. Moreover, the fabrication of an LC QP is relatively simple, and the device has potential for such practical applications as beam shape modulators and spatial polarization converters use in diffractive optics and imaging systems.

© 2013 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Optical Devices

Original Manuscript: March 6, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: April 17, 2013
Published: April 26, 2013

Yao-Han Huang, Shih-Wei Ko, Ming-Shian Li, Shu-Chun Chu, and Andy Y.-G. Fuh, "Modulation of shape and polarization of beam using a liquid crystal q-plate that is fabricated via photo-alignment," Opt. Express 21, 10954-10961 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature421(6921), 423–427 (2003). [CrossRef] [PubMed]
  2. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature338(6215), 514–518 (1989). [CrossRef] [PubMed]
  3. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008). [CrossRef] [PubMed]
  4. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express13(22), 8906–8912 (2005). [CrossRef] [PubMed]
  5. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express18(2), 551–559 (2010). [CrossRef] [PubMed]
  6. P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with spacevariant guided mode resonance filters,” Opt. Express17(22), 20365–20375 (2009). [CrossRef] [PubMed]
  7. Z.-B. Tian, M. Nix, and S. S.-H. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett.34(3), 229–231 (2009). [CrossRef] [PubMed]
  8. W. W. Simmons, G. W. Leppelmeier, and B. C. Johnson, “Optical Beam Shaping Devices Using Polarization Effects,” Appl. Opt.13(7), 1629–1632 (1974). [CrossRef] [PubMed]
  9. S.-W. Ko, T.-H. Lin, Y.-H. Huang, H.-C. Jau, S.-C. Chu, Y.-Yu. Chen, and A. Y.-G. Fuh, “Electrical control of shape of laser beam using axially symmetric liquid crystal cells,” Appl. Opt.51(10), 1540–1545 (2012). [CrossRef] [PubMed]
  10. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express19(5), 4085–4090 (2011). [CrossRef] [PubMed]
  11. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006). [CrossRef] [PubMed]
  12. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt.13(6), 064001 (2011). [CrossRef]
  13. E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express17(21), 18745–18759 (2009). [CrossRef] [PubMed]
  14. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett.88(22), 221102 (2006). [CrossRef]
  15. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006). [CrossRef] [PubMed]
  16. E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A81(5), 053813 (2010). [CrossRef]
  17. E. Nagali, L. Sansoni, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Optimal quantum cloning of orbital angular momentum photon qubits through hong-ou-mandel coalescence,” Nat. Photonics3(12), 720–723 (2009). [CrossRef]
  18. S. Slussarenko, B. Piccirillo, V. Chigrinov, L. Marrucci, and E. Santamato, “Liquid crystal spatial-mode converters for the orbital angular momentum of light,” J. Opt.15(2), 025406 (2013). [CrossRef]
  19. S. H. Tao, X. C. Yuan, J. Lin, and R. E. Burge, “Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges,” Opt. Express14(2), 535–541 (2006). [CrossRef] [PubMed]
  20. C. H. J. Schmitz, K. Uhrig, J. P. Spatz, and J. E. Curtis, “Tuning the orbital angular momentum in optical vortex beams,” Opt. Express14(15), 6604–6612 (2006). [CrossRef] [PubMed]
  21. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett.97(16), 163903 (2006). [CrossRef] [PubMed]
  22. C. Maurer, A. Jesacher, S. F¨urhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007). [CrossRef]
  23. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express15(14), 8619–8625 (2007). [CrossRef] [PubMed]
  24. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007). [CrossRef]
  25. C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(3), 031704 (2004). [CrossRef] [PubMed]
  26. Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express16(6), 3768–3775 (2008). [CrossRef] [PubMed]
  27. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004), Chap. 4.
  28. “Technical Computing with MATLAB,” The MathWorks, Inc, (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited