OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10969–10977

Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St.J. Russell  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 10969-10977 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Efficient generation of a broad-band mid-infrared supercontinuum spectrum is reported in an arsenic trisulphide waveguide embedded in silica. A chalcogenide “nano-spike”, designed to transform the incident light adiabatically into the fundamental mode of a 2-mm-long uniform section 1 µm in diameter, is used to achieve high launch efficiencies. The nano-spike is fully encapsulated in a fused silica cladding, protecting it from the environment. Nano-spikes provide a convenient means of launching light into sub-wavelength scale waveguides. Ultrashort (65 fs, repetition rate 100 MHz) pulses at wavelength 2 µm, delivered from a Tm-doped fiber laser, are launched with an efficiency ~12% into the sub-wavelength chalcogenide waveguide. Soliton fission and dispersive wave generation along the uniform section result in spectral broadening out to almost 4 µm for launched energies of only 18 pJ. The spectrum generated will have immediate uses in metrology and infrared spectroscopy.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: February 11, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 8, 2013
Published: April 26, 2013

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St.J. Russell, "Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide," Opt. Express 21, 10969-10977 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. St. J. Russell, “Photochemistry in photonic Crystal Fiber Nanoreactors,” Chemistry16(19), 5607–5612 (2010). [PubMed]
  2. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008). [CrossRef]
  3. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc.227(3), 203–215 (2007). [CrossRef] [PubMed]
  4. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express14(7), 2798–2804 (2006). [CrossRef] [PubMed]
  5. C. H. Li, A. G. Glenday, A. J. Benedick, G. Q. Chang, L. J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm-1,” Opt. Express18(12), 13239–13249 (2010). [CrossRef] [PubMed]
  6. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  7. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett.26(9), 608–610 (2001). [CrossRef] [PubMed]
  8. G. Humbert, W. J. Wadsworth, S. Leon-Saval, J. C. Knight, T. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express14(4), 1596–1603 (2006). [CrossRef] [PubMed]
  9. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett.28(3), 182–184 (2003). [CrossRef] [PubMed]
  10. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express16(8), 5954–5962 (2008). [CrossRef] [PubMed]
  11. B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express18(24), 24729–24734 (2010). [CrossRef] [PubMed]
  12. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004). [CrossRef] [PubMed]
  13. A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express13(2), 377–381 (2005). [CrossRef] [PubMed]
  14. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  15. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  16. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  17. Heraeus Datasheet for Suprasil glass.
  18. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull.43(4), 976–982 (2008). [CrossRef]
  19. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012). [CrossRef]
  20. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. B. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011). [CrossRef] [PubMed]
  21. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express20(22), 24218–24225 (2012). [CrossRef] [PubMed]
  22. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010). [CrossRef] [PubMed]
  23. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  24. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000). [CrossRef]
  25. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011). [CrossRef] [PubMed]
  26. S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011). [CrossRef]
  27. M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol.7(8), 1139–1152 (1989). [CrossRef]
  28. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  29. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011). [CrossRef] [PubMed]
  30. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express19(13), 12180–12189 (2011). [CrossRef] [PubMed]
  31. D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikaty40, 55–59 (1996).
  32. M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater.3, 341–349 (2001).
  33. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010). [CrossRef]
  34. J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, “Optically Referenced Tm-Fiber-Laser Frequency Comb,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AT5A.3.
  35. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A81(1), 013819 (2010). [CrossRef]
  36. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt.48(29), 5467–5474 (2009). [CrossRef] [PubMed]
  37. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express16(22), 18524–18534 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited