OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10995–11008

Linearity in the response of photopolymers as optical recording media

Sergi Gallego, Andrés Marquez, Francisco J. Guardiola, Marina Riquelme, Roberto Fernández, Inmaculada Pascual, and Augusto Beléndez  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10995-11008 (2013)
http://dx.doi.org/10.1364/OE.21.010995


View Full Text Article

Enhanced HTML    Acrobat PDF (1361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photopolymer are appealing materials for diffractive elements recording. Two of their properties when they are illuminated are useful for this goal: the relief surface changes and the refractive index modifications. To this goal the linearity in the material response is crucial to design the optimum irradiance for each element. In this paper we measured directly some parameters to know how linear is the material response, in terms of the refractive index modulation versus exposure, then we can predict the refractive index distributions during recording. We have analyzed at different recording intensities the evolution of monomer diffusion during recording for photopolymers based on PVA/Acrylamide. This model has been successfully applied to PVA/Acrylamide photopolymers to predict the transmitted diffracted orders and the agreement with experimental values has been increased.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials

ToC Category:
Holography

History
Original Manuscript: February 7, 2013
Revised Manuscript: March 24, 2013
Manuscript Accepted: March 24, 2013
Published: April 26, 2013

Citation
Sergi Gallego, Andrés Marquez, Francisco J. Guardiola, Marina Riquelme, Roberto Fernández, Inmaculada Pascual, and Augusto Beléndez, "Linearity in the response of photopolymers as optical recording media," Opt. Express 21, 10995-11008 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.)112(10), 449–463 (2001). [CrossRef]
  2. T. A. Shankoff, “Phase holograms in dichromated gelatin,” Appl. Opt.7(10), 2101–2105 (1968). [CrossRef] [PubMed]
  3. M. Lehmann, J. P. Lauer, and J. W. Goodman, “High efficiencies, low noise, and suppression of photochrome effects in bleached silver halide holography,” Appl. Opt.9(8), 1948–1949 (1970). [PubMed]
  4. P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep.93(4), 199–299 (1982). [CrossRef]
  5. M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40–1000 µm thick layers,” Phys. Scr.118, 66–68 (2005).
  6. J. Zheng, G. Sun, Y. Jiang, T. Wang, A. Huang, Y. Zhang, P. Tang, S. Zhuang, Y. Liu, and S. Yin, “H-PDLC based waveform controllable optical choppers for FDMF microscopy,” Opt. Express19(3), 2216–2224 (2011). [CrossRef] [PubMed]
  7. Y.-C. Su, C.-C. Chu, W.-T. Chang, and V. K. S. Hsiao, “Characterization of optically switchable holographic polymer-dispersed liquid crystal transmission gratings,” Opt. Mater.34(1), 251–255 (2011). [CrossRef]
  8. I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater.20(14), 4595–4601 (2008). [CrossRef]
  9. M. J. Swanson and G. W. Opperman, “Photochemical surface modification of polymers for improved adhesion,” J. Adhes. Sci. Technol.9(3), 385–391 (1995). [CrossRef]
  10. T. Vuocolo, R. Haddad, G. A. Edwards, R. E. Lyons, N. E. Liyou, J. A. Werkmeister, J. A. M. Ramshaw, and C. M. Elvin, “A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis,” J. Gastrointest. Surg.16(4), 744–752 (2012). [CrossRef] [PubMed]
  11. M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010). [CrossRef]
  12. M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express16(4), 2829–2839 (2008). [CrossRef] [PubMed]
  13. P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” Proc. SPIE5380, 283–288 (2004). [CrossRef]
  14. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express15(24), 16196–16209 (2007). [CrossRef] [PubMed]
  15. J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005). [CrossRef] [PubMed]
  16. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B16(10), 1651–1657 (1999). [CrossRef]
  17. C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. L. Álvarz, A. Beléndez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer,” J. Opt. Soc. Am. B20(10), 2052–2060 (2003). [CrossRef]
  18. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt.41(10), 1929–1939 (1994). [CrossRef]
  19. G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun.115(5-6), 528–532 (1995). [CrossRef]
  20. J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005). [CrossRef] [PubMed]
  21. M. R. Gleeson, S. Liu, C. E. Close, D. Sabol, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci.44(22), 6090–6099 (2009). [CrossRef]
  22. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B28(4), 658–666 (2011). [CrossRef]
  23. M. R. Gleeson, J. V. Kelly, C. E. Close, D. Sabol, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys.102(2), 023108 (2007). [CrossRef]
  24. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms ad dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B26(9), 1736–1745 (2009).
  25. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B26(9), 1746–1754 (2009). [CrossRef]
  26. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt.46(3), 295–301 (2007). [CrossRef] [PubMed]
  27. A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D-1–77170D-12 (2010). [CrossRef]
  28. A. Pu, K. Curtis, and P. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng.35(10), 2824–2829 (1996). [CrossRef]
  29. H. J. Coufal, D. Psaltisand, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  30. C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express11(16), 1876–1886 (2003). [CrossRef] [PubMed]
  31. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express11(16), 1835–1843 (2003). [CrossRef] [PubMed]
  32. S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt.48(22), 4403–4413 (2009). [CrossRef] [PubMed]
  33. S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, “Relief diffracted elements recorded on absorbent photopolymers,” Opt. Express20(10), 11218–11231 (2012). [CrossRef] [PubMed]
  34. I. Pascual, A. Beléndez, F. Mateos, and A. Fimia, “Obtención de elementos ópticos holográficos con fotorresinas AZ-1350: comparación entre métodos directo y copia,” Óptica Pura y Aplicada24, 63–67 (1991).
  35. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamidebased photopolymer,” J. Opt. Soc. Am. B27(2), 197–203 (2010). [CrossRef]
  36. J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B22(2), 406–407 (2005). [CrossRef]
  37. S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater.33(3), 531–537 (2011). [CrossRef]
  38. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt.47(14), 2557–2563 (2008). [CrossRef] [PubMed]
  39. P. Hariharan, “Optical Holography: principles, techniques, and applications,” in Cambridge Studies in Modern Optics, 2nd E (Cambridge, 1996), p. 47.
  40. S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Marquez, and A. Belendez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr.118, 58–60 (2005). [CrossRef]
  41. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express17(20), 18279–18291 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited