OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11031–11036

Waferscale nanophotonic circuits made from diamond-on-insulator substrates

P. Rath, N. Gruhler, S. Khasminskaya, C. Nebel, C. Wild, and W. H. P. Pernice  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11031-11036 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wide bandgap dielectrics are attractive materials for the fabrication of photonic devices because they allow broadband optical operation and do not suffer from free-carrier absorption. Here we show that polycrystalline diamond thin films deposited by chemical vapor deposition provide a promising platform for the realization of large scale integrated photonic circuits. We present a full suite of photonic components required for the investigation of on-chip devices, including input grating couplers, millimeter long nanophotonic waveguides and microcavities. In microring resonators we measure loaded optical quality factors up to 11,000. Corresponding propagation loss of 5dB/mm is also confirmed by measuring transmission through long waveguides.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.4670) Materials : Optical materials
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: January 22, 2013
Revised Manuscript: April 19, 2013
Manuscript Accepted: April 19, 2013
Published: April 26, 2013

P. Rath, N. Gruhler, S. Khasminskaya, C. Nebel, C. Wild, and W. H. P. Pernice, "Waferscale nanophotonic circuits made from diamond-on-insulator substrates," Opt. Express 21, 11031-11036 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007). [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  3. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  4. W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys.45(4), 1846 (1974). [CrossRef]
  5. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  6. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17(17), 14543–14551 (2009). [CrossRef] [PubMed]
  7. K. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97(7), 073112 (2010). [CrossRef]
  8. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011). [CrossRef] [PubMed]
  9. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011). [CrossRef] [PubMed]
  10. I. Aharonovich, A. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics5(7), 397–405 (2011). [CrossRef]
  11. S. Castelletto, J. Harrison, L. Marseglia, A. Stanley-Clarke, B. Gibson, B. Fairchild, J. Hadden, Y.-L. Ho, M. Hiscocks, K. Ganesan, S. Huntington, F. Ladouceur, A. Greentree, S. Prawer, J. O'Brien, and J. Rarity, “Diamond-based structures to collect and guide light,” New J. Phys.13(2), 025020 (2011). [CrossRef]
  12. B. J. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett.12(3), 1578–1582 (2012). [CrossRef] [PubMed]
  13. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011). [CrossRef] [PubMed]
  14. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett.109(3), 033604 (2012). [CrossRef] [PubMed]
  15. M. Füner, C. Wild, and P. Koidl, “Novel microwave plasma reactor for diamond synthesis,” Appl. Phys. Lett.72(10), 1149 (1998). [CrossRef]
  16. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002). [CrossRef]
  17. A. Faraon, P. Barclay, C. Santori, K. Fu, and R. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5(5), 301–305 (2011). [CrossRef]
  18. C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90(8), 081110 (2007). [CrossRef]
  19. X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett.101(17), 171115 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited