OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11037–11047

Hybrid photonic-plasmonic molecule based on metal/Si disks

Qing Wang, Hang Zhao, Xu Du, Weichun Zhang, Min Qiu, and Qiang Li  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11037-11047 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical properties of two identical coupled disks forming a “hybrid photonic-plasmonic molecule” are investigated. Each disk is a metal-dielectric structure supporting hybrid plasmonic-photonic whispering-gallery (WG) modes. The WG modes of a molecule split into two groups of nearly-degenerate modes, i.e., bonding and anti-bonding modes. The oscillation of quality factor (Q) with the inter-disk gap d and significant enhancement at certain inter-disk gaps can be observed. An enhanced Q factor of 1821 for a hybrid photonic-plasmonic molecule composed of two 1.2 μm-diameter disks, compared with that for a single disk, is achieved. The corresponding Purcell factor is 191, making the hybrid photonic-plasmonic molecule an optimal choice for subwavelength-scale device miniaturization and light-matter interactions. Moreover, the far-field emission pattern of the hybrid photonic-plasmonic molecule exhibits an enhanced directional light output by tuning the azimuthal mode number for both bonding and anti-bonding modes.

© 2013 OSA

OCIS Codes
(230.4555) Optical devices : Coupled resonators
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Integrated Optics

Original Manuscript: March 12, 2013
Revised Manuscript: April 23, 2013
Manuscript Accepted: April 24, 2013
Published: April 29, 2013

Qing Wang, Hang Zhao, Xu Du, Weichun Zhang, Min Qiu, and Qiang Li, "Hybrid photonic-plasmonic molecule based on metal/Si disks," Opt. Express 21, 11037-11047 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett.81(12), 2582–2585 (1998). [CrossRef]
  2. H. Lin, J. H. Chen, S. S. Chao, M. C. Lo, S. D. Lin, and W. H. Chang, “Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities,” Opt. Express18(23), 23948–23956 (2010). [CrossRef] [PubMed]
  3. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett.31(7), 921–923 (2006). [CrossRef] [PubMed]
  4. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron.12(1), 78–85 (2006). [CrossRef]
  5. S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum Electron.12(1), 71–77 (2006). [CrossRef]
  6. J. W. Ryu, S. Y. Lee, C. M. Kim, and Y. J. Park, “Directional interacting whispering-gallery modes in coupled dielectric microdisks,” Phys. Rev. A74(1), 013804 (2006). [CrossRef]
  7. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000). [CrossRef]
  8. M. D. Barnes, S. M. Mahurin, A. Mehta, B. G. Sumpter, and D. W. Noid, “Three-dimensional photonic “molecules” from sequentially attached polymer-blend microparticles,” Phys. Rev. Lett.88(1), 015508 (2001). [CrossRef] [PubMed]
  9. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett.85(23), 5508–5510 (2004). [CrossRef]
  10. Y. P. Rakovich, J. F. Donegan, M. Gerlach, A. L. Bradley, T. M. Connolly, J. J. Boland, N. Gaponik, and A. Rogach, “Fine structure of coupled optical modes in photonic molecules,” Phys. Rev. A70(5), 051801 (2004). [CrossRef]
  11. E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE J. Quantum Electron.38(7), 837–843 (2002). [CrossRef]
  12. S. V. Boriskina, T. M. Benson, and P. Sewell, “Photonic molecules made of matched and mismatched microcavities: new functionalities of microlasers and optoelectronic components,” Proc. SPIE6452, 64520X, 64520X-10 (2007). [CrossRef]
  13. L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett.33(10), 1150–1152 (2008). [CrossRef] [PubMed]
  14. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  15. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline whispering gallery-mode resonators,” IEEE Photon. Technol. Lett.17(1), 136–138 (2005). [CrossRef]
  16. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev.2(6), 527–556 (2008). [CrossRef]
  17. T. W. Lu and P. T. Lee, “Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity,” Opt. Express17(3), 1518–1526 (2009). [CrossRef] [PubMed]
  18. S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B23(8), 1565–1573 (2006). [CrossRef]
  19. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett.31(3), 338–340 (2006). [CrossRef] [PubMed]
  20. S. V. Boriskina, “Photonic molecules and spectral engineering,” in Photonic microresonator research and applications, I. Chremmos, O. Schwelb, and N. Uzonoglu, eds. (Springer, New York, 2010).
  21. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators,” J. Lightwave Technol.20(8), 1563–1572 (2002). [CrossRef]
  22. J. Yang, C. Sauvan, A. Jouanin, S. Collin, J. L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express20(15), 16880–16891 (2012). [CrossRef]
  23. S. V. Boriskina, V. Pishko, and A. V. Boriskin, “Optical spectra and output coupling engineering in hybrid WG-mode micro-and meso-scale cavity structures,” in Transparent Optical Networks, 2006 International Conference on (IEEE, 2006), pp. 84–87. [CrossRef]
  24. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009). [CrossRef] [PubMed]
  25. M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett.10(5), 1537–1541 (2010). [CrossRef] [PubMed]
  26. S. H. Kwon, “Deep subwavelength plasmonic whispering-gallery-mode cavity,” Opt. Express20(22), 24918–24924 (2012). [CrossRef] [PubMed]
  27. Y. Song, J. Wang, M. Yan, and M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt.13(7), 075001 (2011). [CrossRef]
  28. S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express19(22), 22305–22315 (2011). [CrossRef] [PubMed]
  29. Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater.25(1), 115–119 (2013). [CrossRef] [PubMed]
  30. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011). [CrossRef]
  31. S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3147–3151 (2011). [CrossRef] [PubMed]
  32. S. V. Boriskina, M. Povinelli, V. N. Astratov, A. V. Zayats, and V. A. Podolskiy, “Collective phenomena in photonic, plasmonic and hybrid structures,” Opt. Express19(22), 22024–22028 (2011). [CrossRef] [PubMed]
  33. R. F. Oulton, V. J. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  34. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in CLEO 2007, paper JTHD112.
  35. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  36. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]
  37. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  38. K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express16(20), 16255–16264 (2008). [CrossRef] [PubMed]
  39. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron.12, 1175–1182 (2006). [CrossRef]
  40. K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol.9(6), 728–736 (1991). [CrossRef]
  41. X. Wu, H. Li, L. Liu, and L. Xu, “Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser,” Appl. Phys. Lett.93(8), 081105 (2008). [CrossRef]
  42. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q factor and emission pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12(1), 52–58 (2006). [CrossRef]
  43. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, inc., Norwood, MA, 1995).
  44. M. T. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004). [CrossRef] [PubMed]
  45. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited