OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11048–11056

Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation

Daniel Bachman, Zhijiang Chen, Robert Fedosejevs, Ying Y. Tsui, and Vien Van  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11048-11056 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1366 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15µm radius were irradiated with single 400nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J·cm−2 with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of −1.7nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(220.4241) Optical design and fabrication : Nanostructure fabrication
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: March 21, 2013
Manuscript Accepted: April 12, 2013
Published: April 29, 2013

Daniel Bachman, Zhijiang Chen, Robert Fedosejevs, Ying Y. Tsui, and Vien Van, "Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation," Opt. Express 21, 11048-11056 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012). [CrossRef]
  2. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008). [CrossRef]
  3. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007). [CrossRef] [PubMed]
  4. S. Yamatogi, Y. Amemiya, T. Ikeda, A. Kuroda, and S. Yokoyama, “Si ring optical resonators for integrated on-chip biosensing,” Jpn. J. Appl. Phys.48(4), 04C188 (2009). [CrossRef]
  5. S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express16(20), 15949–15957 (2008). [CrossRef] [PubMed]
  6. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010). [CrossRef] [PubMed]
  7. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011). [CrossRef]
  8. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  9. H. Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng.47, 044601 (2008). [CrossRef]
  10. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009). [CrossRef]
  11. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express20(14), 15807–15817 (2012). [CrossRef] [PubMed]
  12. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express16(6), 3738–3743 (2008). [CrossRef] [PubMed]
  13. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett.37(15), 3114–3116 (2012). [CrossRef] [PubMed]
  14. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express19(13), 12480–12489 (2011). [CrossRef] [PubMed]
  15. Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett.36(14), 2668–2670 (2011). [CrossRef] [PubMed]
  16. S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett.11(6), 688–690 (1999). [CrossRef]
  17. D. K. Sparacin, C. Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photooxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett.30(17), 2251–2253 (2005). [CrossRef] [PubMed]
  18. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006). [CrossRef]
  19. D. Bachman, Z. Chen, A. M. Prabhu, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Femtosecond laser tuning of silicon microring resonators,” Opt. Lett.36(23), 4695–4697 (2011). [CrossRef] [PubMed]
  20. J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys., A Mater. Sci. Process.84(1-2), 63–66 (2006). [CrossRef]
  21. Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, “Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation,” Appl. Phys. Lett.90(4), 044107 (2007). [CrossRef]
  22. Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Abaltion and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys.45(7), 5791–5794 (2006). [CrossRef]
  23. Y. Izawa, S. Tokita, M. Fujita, M. Nakai, T. Norimatsu, and Y. Izawa, “Ultrathin amorphization of single-crystal silicon by ultraviolet femtosecond laser pulse irradiation,” J. Appl. Phys.105(6), 064909 (2009). [CrossRef]
  24. W. J. Liu, S. Chen, H. Y. Cheng, J. D. Lin, and S. L. Fu, “Fabrication of amorphous silicon films for arrayed waveguide grating application,” Surf. Coat. Tech.201(15), 6581–6584 (2007). [CrossRef]
  25. M. J. A. de Dood, A. Polman, T. Zijlstra, and E. W. J. M. van der Drift, “Amorphous silicon waveguides for microphotonics,” J. Appl. Phys.92(2), 649–653 (2002). [CrossRef]
  26. B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997). [CrossRef] [PubMed]
  27. F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett.96(8), 081112 (2010). [CrossRef]
  28. G. C. Ballesteros, J. Matres, J. Martí, and C. J. Oton, “Characterizing and modeling backscattering in silicon microring resonators,” Opt. Express19(25), 24980–24985 (2011). [CrossRef] [PubMed]
  29. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express19(1), 306–316 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited