OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11101–11106

Fano resonance in concentric ring apertures

Jie Shu, Weilu Gao, and Qianfan Xu  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11101-11106 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a polarization-independent mid-infrared Fano resonance with extraordinary transmission when light passes through two concentric metallic ring apertures. A high-Q dark mode is indirectly excitated by coupling with a low-Q bright mode. A coupled optical resonator model is used to analyze the coupling process between the bright and dark modes. We find the Q of the dark mode is 3~6 times higher than that of the bright mode. We show that the dark mode can be selectively disabled without affecting the bright mode.

© 2013 OSA

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(260.5740) Physical optics : Resonance
(300.6340) Spectroscopy : Spectroscopy, infrared
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: January 22, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 22, 2013
Published: April 29, 2013

Jie Shu, Weilu Gao, and Qianfan Xu, "Fano resonance in concentric ring apertures," Opt. Express 21, 11101-11106 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010). [CrossRef] [PubMed]
  2. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett.37(23), 4919–4921 (2012). [CrossRef] [PubMed]
  3. Z. Dong, M. Xu, S. Lei, H. Liu, T. Li, F. Wang, and S. Zhu, “Negative refraction with magnetic resonance in a metallic a double-ring metamaterial,” Appl. Phys. Lett.92(6), 064101 (2008). [CrossRef]
  4. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  5. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express18(17), 17997–18002 (2010). [CrossRef] [PubMed]
  6. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009). [CrossRef] [PubMed]
  7. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401–047404 (2008). [CrossRef] [PubMed]
  8. H. R. Park, Y. M. Bahk, K. J. Ahn, Q. H. Park, D. S. Kim, L. Martín-Moreno, F. J. García-Vidal, and J. Bravo-Abad, “Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas,” ACS Nano5(10), 8340–8345 (2011). [CrossRef] [PubMed]
  9. Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, and D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express20(23), 25644–25653 (2012). [CrossRef] [PubMed]
  10. A. Artar, A. A. Yanik, and H. Altug, “Multi-spectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011). [CrossRef] [PubMed]
  11. C. W. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011). [CrossRef] [PubMed]
  12. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  13. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B.-J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett.10(6), 2064–2068 (2010). [CrossRef] [PubMed]
  14. J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, and Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express19(27), 26666–26671 (2011). [CrossRef] [PubMed]
  15. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  16. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003). [CrossRef] [PubMed]
  17. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999). [CrossRef]
  18. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited