OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11107–11114

Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials

Ting S. Luk, Iltai Kim, Salvatore Campione, Stephen W. Howell, Ganapathi S. Subramania, Robert K. Grubbs, Igal Brener, Hou-Tong Chen, Shanhui Fan, and Michael B. Sinclair  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11107-11114 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate experimentally signatures and dispersion control of surface plasmon polaritons from 1 to 1.8 µm using periodic multilayer metallo-dielectric hyperbolic metamaterials. The fabricated structures are comprised of smooth films with very low metal filling factor. The measured dispersion properties of these hyperbolic metamaterials agree well with calculations using transfer matrix, finite-difference time-domain, and effective medium approximation methods despite using only 2.5 periods. The enhancement factor in the local photonic density of states from the studied samples in the near-infrared wavelength region is determined to be 2.5-3.5. Development of this type of metamaterial is relevant to sub-wavelength imaging, spontaneous emission and thermophotovoltaic applications.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 2, 2013
Manuscript Accepted: April 5, 2013
Published: April 29, 2013

Ting S. Luk, Iltai Kim, Salvatore Campione, Stephen W. Howell, Ganapathi S. Subramania, Robert K. Grubbs, Igal Brener, Hou-Tong Chen, Shanhui Fan, and Michael B. Sinclair, "Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials," Opt. Express 21, 11107-11114 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011). [CrossRef] [PubMed]
  2. A. Ono, J.-i. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005). [CrossRef] [PubMed]
  3. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  4. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  5. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express15(2), 508–523 (2007). [CrossRef] [PubMed]
  6. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B76(20), 205424 (2007). [CrossRef]
  7. X. Yang, B. Zeng, C. Wang, and X. Luo, “Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer,” Opt. Express17(24), 21560–21565 (2009). [CrossRef] [PubMed]
  8. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010). [CrossRef]
  9. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012). [CrossRef] [PubMed]
  10. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012). [CrossRef]
  11. Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  12. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  13. I. Kim and K. D. Kihm, “Unveiling Hidden complex cavities formed during nanocrystalline self-assembly,” Langmuir25(4), 1881–1884 (2009). [CrossRef] [PubMed]
  14. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012). [CrossRef] [PubMed]
  15. C. Otey and S. Fan, “Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate,” Phys. Rev. B84(24), 245431 (2011). [CrossRef]
  16. R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107(1), 014301 (2011). [CrossRef] [PubMed]
  17. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3(9), 514–517 (2009). [CrossRef]
  18. P. J. van Zwol, L. Ranno, and J. Chevrier, “Tuning near field radiative heat flux through surface excitations with a metal insulator transition,” Phys. Rev. Lett.108(23), 234301 (2012). [CrossRef] [PubMed]
  19. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9(8), 2909–2913 (2009). [CrossRef] [PubMed]
  20. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012). [CrossRef]
  21. M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conv.26(2), 686–698 (2011). [CrossRef]
  22. A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett.85(7), 1548–1551 (2000). [CrossRef] [PubMed]
  23. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res.33(13), 1203–1232 (2009). [CrossRef]
  24. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20(S3), A366–A384 (2012). [CrossRef] [PubMed]
  25. M. Laroche, R. Carminati, and J. J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys.100(6), 063704 (2006). [CrossRef]
  26. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett.82(20), 3544–3546 (2003). [CrossRef]
  27. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012). [CrossRef] [PubMed]
  28. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012). [CrossRef]
  29. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  30. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005). [CrossRef]
  31. N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010). [CrossRef] [PubMed]
  32. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008). [CrossRef]
  33. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005). [CrossRef] [PubMed]
  34. M. L. Nesterov, D. Martin-Cano, A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Geometrically induced modification of surface plasmons in the optical and telecom regimes,” Opt. Lett.35(3), 423–425 (2010). [CrossRef] [PubMed]
  35. J. T. Shen, P. B. Catrysse, and S. H. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005). [CrossRef] [PubMed]
  36. S. Q. Li, P. J. Guo, L. X. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano5(11), 9161–9170 (2011). [CrossRef] [PubMed]
  37. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt.14(6), 063001 (2012). [CrossRef]
  38. Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, “Surface plasmon polaritons on metal-dielectric nanocomposite films,” in OSA Technical Digest (CD) (Optical Society of America, 2009), IThG6.
  39. S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Hayashi, “Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials,” Opt. Express16(13), 9942–9950 (2008). [CrossRef] [PubMed]
  40. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B75(24), 241402 (2007). [CrossRef]
  41. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B46(4), 2503–2511 (1992). [CrossRef]
  42. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81(3), 035402 (2010). [CrossRef]
  43. B. Gompf, J. Beister, T. Brandt, J. Pflaum, and M. Dressel, “Nanometer-thick Au-films as antireflection coating for infrared light,” Opt. Lett.32(11), 1578–1580 (2007). [CrossRef] [PubMed]
  44. J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(4), 046618 (2006). [CrossRef] [PubMed]
  45. W. Cai and V. Shalaev, Optical Metamaterials Fundamentals and applications (Springer, 2010).
  46. S. V. Zhirnov and D. I. Sementsov, “Surface polaritons in a thin layer of an anisotropic superconductor,” Opt. Spectrosc.104(3), 467–474 (2008). [CrossRef]
  47. C. H. Gan and P. Lalanne, “Well-confined surface plasmon polaritons for sensing applications in the near-infrared,” Opt. Lett.35(4), 610–612 (2010). [CrossRef] [PubMed]
  48. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett.10(3), 916–922 (2010). [CrossRef] [PubMed]
  49. W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing,” Appl. Phys. Lett.97(21), 211107 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited