OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11115–11124

A hybrid analysis method for plasmonic enhanced terahertz photomixer sources

Saman Jafarlou, Mohammad Neshat, and Safieddin Safavi-Naeini  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11115-11124 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid analysis of a continuous-wave terahertz photomixer source structure with plasmonic nano-grating electrodes is presented. Using the hybrid analysis, the enhancement of the optical power absorption due to the presence of the one-dimensional metallic nano-grating is investigated by defining an absorption enhancement factor. We show that the proposed absorption enhancement factor can be used as a design tool, whose maximization provides the optimum geometrical parameters of the nano-grating. Based on drift-diffusion model, the photocurrent enhancement due to the nano-grating electrodes is studied under three different bias configurations. Moreover, the dependence of the photocurrent on the physical parameters of the photomixer is analyzed.

© 2013 OSA

OCIS Codes
(040.5150) Detectors : Photoconductivity
(240.6680) Optics at surfaces : Surface plasmons
(040.2235) Detectors : Far infrared or terahertz

ToC Category:

Original Manuscript: March 5, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 14, 2013
Published: April 30, 2013

Saman Jafarlou, Mohammad Neshat, and Safieddin Safavi-Naeini, "A hybrid analysis method for plasmonic enhanced terahertz photomixer sources," Opt. Express 21, 11115-11124 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal–semiconductor–metal photodetectors,” J. Opt. A: Pure Appl. Opt.8, 175 (2006). [CrossRef]
  3. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express18, 19558–19565 (2010). [CrossRef] [PubMed]
  4. S. H. Kim, C. M. Lee, S. B. Sim, J. H. Kim, J. H. Choi, W. S. Han, K. J. Ahn, and K. J. Y., “Enhanced in and out-coupling of InGaAs slab waveguides by periodic metal slit arrays,” Opt. Express20(6), 6365–6374 (2012). [CrossRef] [PubMed]
  5. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  6. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nature Commun.4, 1622 (2013). [CrossRef]
  7. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys.14, 105029 (2012). [CrossRef]
  8. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. M. Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Letters12(12), 6255–6259 (2012). [CrossRef] [PubMed]
  9. S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS nano6(3), 2026–2031 (2012). [CrossRef] [PubMed]
  10. S. G. Park, Y. Choi, Y. J. Oh, and K. H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express20(23), 25530–25535 (2012). [CrossRef] [PubMed]
  11. S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided waves and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans. Terahertz Sci. Technol.2(6), 652–658 (2012). [CrossRef]
  12. V. N. Truchin, A. V. Andrianov, and N. N. Zinovev, “Generation of terahertz radiation by a moving bunch of nonequilibrium electron-hole plasma,” Phys. Rev. B78(15), 155325 (2008). [CrossRef]
  13. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B.13(11), 2424–2436 (1996). [CrossRef]
  14. T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, “Subpicosecond carrier transport in GaAs surface-space-charge fields,” Phys. Rev. B47(7), 3842 (1993). [CrossRef]
  15. M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A global approach for modeling and analysis of edge-coupled traveling-wave terahertz photoconductive sources,” IEEE Trans. Microw. Theory Tech.58(7), 1952–1966 (2010). [CrossRef]
  16. M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid computational simulation and study of continuous wave terahertz photomixers,” IEEE Trans. Terahertz Sci. Technol.2(6), 605–616 (2012). [CrossRef]
  17. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999). [CrossRef]
  18. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907 (1982). [CrossRef]
  19. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt.2(1), 48 (1999). [CrossRef]
  20. A. T. M. Rahman, K. Vasilev, and P. Majewski, “Analytical solution of the fundamental waveguide mode of one-dimensional transmission grating for tm polarization,” J. Opt. Soc. Am. B.28(12), 2919–2924 (2011). [CrossRef]
  21. TCAD Sentaurus, http://www.synopsys.com (access date Nov. 2012).
  22. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.3722, 5271–5283 (1998). [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  24. H. Engan, “Excitation of elastic surface waves by spatial harmonics of interdigital transducers,” IEEE Trans. Electron Dev.16(12), 1014–1017 (1969). [CrossRef]
  25. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001). [CrossRef]
  26. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett.12(6), 2894–2900 (2012). [CrossRef] [PubMed]
  27. S. L. Chuang, Physics of optoelectronic devices (Series in pure & applied optics) (Wiley, 2009).
  28. H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90(3), 1303–1306 (2001). [CrossRef]
  29. D. Liu and J. Qin, “Carrier Dynamics of Terahertz Emission from Low-Temperature-Grown GaAs,” Appl. Opt.42, 3678–3683 (2003). [CrossRef] [PubMed]
  30. S. Preu, G.H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys.109, 061301 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited