OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11125–11131

Conical Refraction: New observations and a dual cone model

G. S. Sokolovskii, D. J. Carnegie, T. K. Kalkandjiev, and E. U. Rafailov  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11125-11131 (2013)
http://dx.doi.org/10.1364/OE.21.011125


View Full Text Article

Enhanced HTML    Acrobat PDF (1168 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a ‘competition’ between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.

© 2013 OSA

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence

ToC Category:
Physical Optics

History
Original Manuscript: March 7, 2013
Revised Manuscript: April 15, 2013
Manuscript Accepted: April 18, 2013
Published: April 30, 2013

Virtual Issues
July 5, 2013 Spotlight on Optics

Citation
G. S. Sokolovskii, D. J. Carnegie, T. K. Kalkandjiev, and E. U. Rafailov, "Conical Refraction: New observations and a dual cone model," Opt. Express 21, 11125-11131 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11125


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Hamilton, “Third supplement to an essay on the theory of systems of rays,” Trans. Roy. Irish Acad.17, 1–144 (1833).
  2. H. Lloyd, “On the phenomena presented by light in its passage along the axes of biaxial crystals,” Philos. Mag.1, 112–120 and 207–210 (1833).
  3. C. V. Raman, “Conical refraction in biaxial crystals,” Nature107(2702), 747 (1921). [CrossRef]
  4. C. V. Raman, V. S. Rajagopalan, and T. M. K. Nedungadi, “Conical Refraction in Naphthalene Crystals,” Nature147(3722), 268 (1941). [CrossRef]
  5. S. Melmore, “Conical Refraction,” Nature151(3839), 620–621 (1943). [CrossRef]
  6. A. Abdolvand, K. G. Wilcox, T. K. Kalkandjiev, and E. U. Rafailov, “Conical refraction Nd:KGd(WO4)2 laser,” Opt. Express18(3), 2753–2759 (2010). [CrossRef] [PubMed]
  7. K. G. Wilcox, A. Abdolvand, T. K. Kalkandjiev, and E. U. Rafailov, “Laser with simultaneous Gaussian and conical refraction outputs,” Appl. Phys. B99(4), 619–622 (2010). [CrossRef]
  8. S. Zolotovskaya, A. Abdolvand, T. K. Kalkandjiev, and E. U. Rafailov, “Second-harmonic conical refraction: observation of free and forced harmonic waves,” Appl. Phys. B103(1), 9–12 (2011). [CrossRef]
  9. D. P. O’Dwyer, C. F. Phelan, Y. P. Rakovich, P. R. Eastham, J. G. Lunney, and J. F. Donegan, “Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction,” Opt. Express18(16), 16480–16485 (2010). [CrossRef] [PubMed]
  10. C. McDougall, R. Henderson, D. J. Carnegie, G. S. Sokolovskii, E. U. Rafailov, and D. McGloin, “Flexible particle manipulation techniques with conical refraction based optical tweezers,” Proc. SPIE8458, 845824, 845824-7 (2012). [CrossRef]
  11. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett.105(11), 118103 (2010). [CrossRef] [PubMed]
  12. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing Local Field Structure of Focused Ultrashort Pulses,” Phys. Rev. Lett.106(12), 123901 (2011). [CrossRef] [PubMed]
  13. A. M. Belskii and A. P. Khapaluyk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc.44, 312 (1978).
  14. M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A, Pure Appl. Opt.6(4), 289–300 (2004). [CrossRef]
  15. M. Abramovitz and I. A. Stegun, Handbook on Mathematical Functions (US Dept. of Commerce, Washington, USA, 1972).
  16. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, UK, 1997).
  17. C. F. Phelan, D. P. O’Dwyer, Y. P. Rakovich, J. F. Donegan, and J. G. Lunney, “Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal,” Opt. Express17(15), 12891–12899 (2009). [CrossRef] [PubMed]
  18. N. S. Kazak, N. A. Khilo, and A. A. Ryzhevich, “Generation of Bessel light beams under the conditions of internal conical refraction,” Quantum Electron.29(11), 1020–1024 (1999). [CrossRef]
  19. N. S. Kazak, A. A. Ryzhevich, E. G. Katranzhi, and N. A. Khilo, “Forming annular and Bessel light beams under conditions of internal conical refraction,” J. Opt. Technol.67(12), 1064 (2000). [CrossRef]
  20. M. A. Stepanov, “Transformation of Bessel beams under internal conical refraction,” Opt. Commun.212(1-3), 11–16 (2002). [CrossRef]
  21. D. P. O’Dwyer, C. F. Phelan, Y. P. Rakovich, T. Cizmar, K. Dholakia, J. F. Donegan, and J. G. Lunney, “Polarisation distribution for Internal Conical Diffraction and the Superposition of Zero and First Order Bessel Beams,” Proc. SPIE7062, 70620W, 70620W-9 (2008). [CrossRef]
  22. C. McDougall, R. Henderson, D. J. Carnegie, G. S. Sokolovskii, E. U. Rafailov, and D. McGloin, “Flexible particle manipulation techniques with conical refraction-based optical tweezers,” Proc. SPIE8458, 845824, 845824-7 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited