OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11132–11140

Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology

Kiyotaka Sasagawa, Sanshiro Shishido, Keisuke Ando, Hitoshi Matsuoka, Toshihiko Noda, Takashi Tokuda, Kiyomi Kakiuchi, and Jun Ohta  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11132-11140 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1929 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm2 pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

© 2013 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(130.3120) Integrated optics : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 14, 2013
Revised Manuscript: April 19, 2013
Manuscript Accepted: April 19, 2013
Published: April 30, 2013

Kiyotaka Sasagawa, Sanshiro Shishido, Keisuke Ando, Hitoshi Matsuoka, Toshihiko Noda, Takashi Tokuda, Kiyomi Kakiuchi, and Jun Ohta, "Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology," Opt. Express 21, 11132-11140 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett.45(4), 228–230 (2009). [CrossRef]
  2. T. Tokuda, H. Yamada, K. Sasagawa, and J. Ohta, “Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems,” IEEE Trans. Biomed. Circuits Syst.3(5), 259–266 (2009). [CrossRef]
  3. M. Ikeda and Y. Kim, “Measurement and analysis on characteristics of transmission and polarization for 12ML 65nm CMOS,” in Proceedings of the IEEE Sensors (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 548–551.
  4. M. Sarkar, S. Member, D. San, S. Bello, C. V. Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sensors J.11(8), 1692–1703 (2011). [CrossRef]
  5. S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys.50(4), 04DL01 (2011). [CrossRef]
  6. P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A20(12), 2293–2306 (2003). [CrossRef]
  7. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express18(18), 19087–19094 (2010). [CrossRef] [PubMed]
  8. V. Gruev, “Fabrication of a dual-layer aluminum nanowire polarization filter array,” Opt. Express19(24), 24361–24369 (2011). [CrossRef] [PubMed]
  9. M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett.94(19), 193503 (2009). [CrossRef]
  10. F. Boussaid, A Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Tech. Lett.21(12), 805–807 (2009). [CrossRef]
  11. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express18(17), 17776–17787 (2010). [CrossRef] [PubMed]
  12. X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” Micropolarizer arrays for visible imaging polarimetry,” Opt. Express19(6), 5565–5573 (2011). [CrossRef] [PubMed]
  13. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express18(18), 19292–19303 (2010). [CrossRef] [PubMed]
  14. T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt.46(22), 4963–4967 (2007). [CrossRef] [PubMed]
  15. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express14(6), 2323–2334 (2006). [CrossRef] [PubMed]
  16. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt.44(8), 1387–1392 (2005). [CrossRef] [PubMed]
  17. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett.28(10), 816–818 (2003). [CrossRef] [PubMed]
  18. Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech.47(12), 2644–2650 (1999). [CrossRef]
  19. M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett.86(14), 141109 (2005). [CrossRef]
  20. K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, “Live electrooptic imaging system based on ultra-parallel photonic heterodyne for microwave near-fields,” IEEE Trans. Microwave Theory Tech.55(12), 2782–2791 (2007). [CrossRef]
  21. K. Sasagawa, A. Kanno, and M. Tsuchiya, “Instantaneous visualization of K-Band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation,” J. Lightwave Technol.26(15), 2782–2788 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited