OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11141–11149

Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy

Naoya Kuse, Akira Ozawa, and Yohei Kobayashi  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11141-11149 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2077 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(320.7090) Ultrafast optics : Ultrafast lasers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:

Original Manuscript: February 12, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: April 24, 2013
Published: April 30, 2013

Naoya Kuse, Akira Ozawa, and Yohei Kobayashi, "Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy," Opt. Express 21, 11141-11149 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15, 1263–1276 (1997). [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15, 1442–1463 (1997). [CrossRef]
  3. M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A.147, 150–164 (2008). [CrossRef]
  4. Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO 2012, CM4B (2012).
  5. A. D. Kersey, T. A. Berkoff, and W. M. Morsey, “Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength fiber,” Opt. Lett.18, 1370–1372 (1993). [CrossRef] [PubMed]
  6. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13, 1243–1249 (1995). [CrossRef]
  7. J. H. Chow, D. E. McClelland, and M. B. Gray, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett.30, 1923–1925 (2005). [CrossRef] [PubMed]
  8. T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49, 4029–4033 (2010). [CrossRef] [PubMed]
  9. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330, 1081–1084 (2010). [CrossRef] [PubMed]
  10. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express19, 25057–25065 (2011). [CrossRef]
  11. T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on laser locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21, 094010 (2010). [CrossRef]
  12. T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Special Topics172, 69–79 (2009). [CrossRef]
  13. S. Schiller, “Spectrimetry with frequency combs,” Opt. Lett.27, 766–768 (2002) [CrossRef]
  14. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency comb spectrometer,” Opt. Lett.29, 1542–1544 (2004). [CrossRef] [PubMed]
  15. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A82, 043817 (2010). [CrossRef]
  16. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008). [CrossRef] [PubMed]
  17. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachivili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55–57 (2010). [CrossRef]
  18. J. D. Deschênes, P. Giaccari, and J. Genest, “Optical referencing technique with CW laser as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express18, 23358–23370 (2010). [CrossRef] [PubMed]
  19. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3, 351–356 (2009). [CrossRef]
  20. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett.34, 2153–2155 (2009). [CrossRef] [PubMed]
  21. G. Taurand, P. Giaccari, J. D. Deschênes, and J. Genest, “Time-domain optical reflectometry measurements using a frequency comb interferometer,” Appl. Opt.49, 4413–4419 (2010). [CrossRef] [PubMed]
  22. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Tereaherz frequency comb by multi resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006). [CrossRef]
  23. N. Kuse, A. Ozawa, and Y. Kobayashi, “Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers,” Appl. Phys. Express5, 112402 (2012). [CrossRef]
  24. Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett.37, 434–436 (2012). [CrossRef] [PubMed]
  25. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett.29, 250–252 (2004) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited