OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11187–11201

A simplified approach to quantitative coded aperture X-ray phase imaging

Peter R.T. Munro, Charlotte K. Hagen, Magdalena B. Szafraniec, and Alessandro Olivo  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11187-11201 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1617 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We recently demonstrated how quantitative X-ray phase contrast imaging may be performed with laboratory sources using the coded aperture technique. This technique required the knowledge of system parameters such as, for example, the source focal spot size and distances between elements of the imaging system. The method also assumes that the absorbing regions of the apertures are perfectly absorbing. In this paper we demonstrate how quantitative imaging can be performed without knowledge of individual system parameters and with partially absorbing apertures. We also show that this method is analogous to that employed in analyser based imaging which uses the rocking curve of an analyser crystal.

© 2013 OSA

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
X-ray Optics

Original Manuscript: December 7, 2012
Revised Manuscript: March 11, 2013
Manuscript Accepted: March 16, 2013
Published: April 30, 2013

Peter R.T. Munro, Charlotte K. Hagen, Magdalena B. Szafraniec, and Alessandro Olivo, "A simplified approach to quantitative coded aperture X-ray phase imaging," Opt. Express 21, 11187-11201 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett.91, 074106 (2007). [CrossRef]
  2. T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature373, 595–598 (1995). [CrossRef]
  3. D. Chapman, W. Thomlinson, F. Arfelli, N. Gmür, Z. Zhong, R. Menk, R. E. Johnson, D. Washburn, E. Pisano, and D. Sayers, “Mammography imaging studies using a laue crystal analyzer,” The 9th National Conference on Synchrotron Radiation Instrumentation67, 3360–3360 (1996).
  4. D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42, 2015–2025 (1997). [CrossRef] [PubMed]
  5. D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun.234, 87–105 (2004). [CrossRef]
  6. Y. I. Nesterets, T. Gureyev, D. Paganin, K. Pavlov, and S. W. Wilkins, “Quantitative diffraction-enhanced x-ray imaging of weak objects,” J. Phys. D Appl. Phys.37, 1262–1274 (2004). [CrossRef]
  7. M. J. Kitchen, D. M. Paganin, K. Uesugi, B. J. Allison, R. A. Lewis, S. B. Hooper, and K. M. Pavlov, “X-ray phase, absorption and scatter retrieval using two or more phase contrast images,” Opt. Express18, 19994–20012 (2010). [CrossRef] [PubMed]
  8. P. C. Diemoz, P. Coan, C. Glaser, and A. Bravin, “Absorption, refraction and scattering in analyzer-based imaging: comparison of different algorithms,” Opt. Express18, 3494–3509 (2010). [CrossRef] [PubMed]
  9. D. J. Vine, D. M. Paganin, K. M. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett.91, 254110 (2007). [CrossRef]
  10. C. Kottler, F. Pfeiffer, O. Bunk, C. Gruenzweig, J. Bruder, R. Kaufmann, L. Tlustos, H. Walt, I. Briod, T. Weitkamp, and C. David, “Phase contrast x-ray imaging of large samples using an incoherent laboratory source,” Phys. Status Solidi. A204, 2728–2733 (2007). [CrossRef]
  11. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nat. Phys.2, 258–261 (2006). [CrossRef]
  12. A. Momose, W. Yashiro, H. Kuwabara, and K. Kawabata, “Grating-based x-ray phase imaging using multiline x-ray source,” Jpn. J. Appl. Phys.48, 076512 (2009). [CrossRef]
  13. A. Momose, “Recent advances in x-ray phase imaging,” Jpn. J. Appl. Phys.44, 6355–6367 (2005). [CrossRef]
  14. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. Menk, S. Pani, M. Prest, P. Poropat, L. Rigon, G. Tromba, E. Vallazza, and E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys.28, 1610–1619 (2001). [CrossRef] [PubMed]
  15. P. Munro, K. Ignatyev, R. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent x-ray sources,” Proc. Natl. Acad. Sci. USA109, 13922–13927 (2012). [CrossRef] [PubMed]
  16. P. R. Munro, L. Rigon, K. Ignatyev, F. C. Lopez, D. Dreossi, R. D. Speller, and A. Olivo, “A quantitative, non-interferometric x-ray phase contrast imaging technique,” Opt. Express21, 647–661 (2013). [CrossRef] [PubMed]
  17. P. Munro, K. Ignatyev, R. Speller, and A. Olivo, “Source size and temporal coherence requirements of coded aperture type x-ray phase contrast imaging systems,” Opt. Express18, 19681–19692 (2010). [CrossRef] [PubMed]
  18. M. Marenzana, C. K. Hagen, P. D. N. Borges, M. Endrizzi, M. B. Szafraniec, K. Ignatyev, and A. Olivo, “Visualization of small lesions in rat cartilage by means of laboratory-based x-ray phase contrast imaging,” Phys. Med. Biol.57, 8173–8184 (2012). [CrossRef] [PubMed]
  19. S. Mayo, P. Miller, S. Wilkins, T. Davis, D. Gao, T. Gureyev, D. Paganin, D. Parry, A. Pogany, and A. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” Journal of Microscopy-Oxford207, 79–96 (2002). [CrossRef]
  20. T. Gureyev and S. Wilkins, “On x-ray phase imaging with a point source,” J. Opt. Soc. Am. A15, 579–585 (1998). [CrossRef]
  21. D. Paganin, Coherent X-ray optics, Oxford series on synchrotron radiation (Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, 2006). [CrossRef]
  22. P. Munro, K. Ignatyev, R. Speller, and A. Olivo, “The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems,” Opt. Express18, 4103–4117 (2010). [CrossRef] [PubMed]
  23. A. Olivo and R. Speller, “Experimental validation of a simple model capable of predicting the phase contrast imaging capabilities of any x-ray imaging system,” Phys. Med. Biol.51, 3015–3030 (2006). [CrossRef] [PubMed]
  24. P. C. Diemoz, P. Coan, I. Zanette, A. Bravin, S. Lang, C. Glaser, and T. Weitkamp, “A simplified approach for computed tomography with an x-ray grating interferometer,” Opt. Express19, 1691–1698 (2011). [CrossRef] [PubMed]
  25. M. Chabior, T. Donath, C. David, O. Bunk, M. Schuster, C. Schroer, and F. Pfeiffer, “Beam hardening effects in grating-based x-ray phase-contrast imaging,” Med. Phys.38, 1189–1195 (2011). [CrossRef] [PubMed]
  26. B. Henke, E. Gullikson, and J. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50–30,000 ev, z = 1–92,” Atom. Data Nucl. Data54, 181–342 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited