OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11202–11208

Direct laser writing of three-dimensional narrow bandgap and high refractive-index PbSe structures in a solution

Zongsong Gan, Yaoyu Cao, and Min Gu  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11202-11208 (2013)
http://dx.doi.org/10.1364/OE.21.011202


View Full Text Article

Enhanced HTML    Acrobat PDF (2560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional (3D) micro/nano structures made of narrow electronic bandgap semiconductor materials have important applications in a wide range of disciplines. Direct laser writing (DLW) provides the unparalleled advantage to fabricate 3D arbitrary geometric structures at the micro and nano meter scale. The fabrication of 3D structures within bulk narrow electronic bandgap semiconductor materials by DLW is challenged for the top-down strategy due to their narrow bandgap and high refractive index. Here, we report on the bottom-up strategy for the fabrication of 3D micro/nano structures made from PbSe with an electronic bandgap as narrow as 0.27 eV and a refractive index as high as 4.82 in a solution.

© 2013 OSA

OCIS Codes
(140.3450) Lasers and laser optics : Laser-induced chemistry
(160.4670) Materials : Optical materials
(160.6000) Materials : Semiconductor materials
(220.4610) Optical design and fabrication : Optical fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: March 11, 2013
Revised Manuscript: April 24, 2013
Manuscript Accepted: April 25, 2013
Published: April 30, 2013

Citation
Zongsong Gan, Yaoyu Cao, and Min Gu, "Direct laser writing of three-dimensional narrow bandgap and high refractive-index PbSe structures in a solution," Opt. Express 21, 11202-11208 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11202


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett.27(20), 1824–1826 (2002). [CrossRef] [PubMed]
  2. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater.7(7), 543–546 (2008). [CrossRef] [PubMed]
  3. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001). [CrossRef]
  4. K. Ohlinger, Y. Lin, Z. Poole, and K. P. Chen, “Undistorted 3D microstructures in SU8 formed through two-photon polymerization,” AIP Advances1(3), 032163 (2011). [CrossRef]
  5. J. Serbin and M. Gu, “Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization,” Opt. Express14(8), 3563–3568 (2006). [CrossRef] [PubMed]
  6. M. D. Turner, G. E. Schröder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express19(10), 10001–10008 (2011). [CrossRef] [PubMed]
  7. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006). [CrossRef]
  8. E. Nicoletti, D. Bulla, B. Luther-Davies, and M. Gu, “Generation of λ/12 nanowires in chalcogenide glasses,” Nano Lett.11(10), 4218–4221 (2011). [CrossRef] [PubMed]
  9. A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater.21(34), 3526–3530 (2009). [CrossRef]
  10. M. Bass, Handbook of Optics, 2nd ed., Vol. 2 (McGraw-Hill 1994). This can also be found at http://refractiveindex.info/?group=CRYSTALS&material .
  11. I. Moreels, Z. Hens, P. Kockaert, J. Loicq, and D. Van Thourhout, “Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals,” Appl. Phys. Lett.89(19), 193106 (2006). [CrossRef]
  12. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third‐order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys.74(6), 3683–3687 (1993). [CrossRef]
  13. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett.5(5), 865–871 (2005). [CrossRef] [PubMed]
  14. D. Parker and D. J. Singh, “High-temperature thermoelectric performance of heavily doped PbSe,” Phys. Rev. B82(3), 035204 (2010). [CrossRef]
  15. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19(10), 9419–9425 (2011). [CrossRef] [PubMed]
  16. H. I. De Lasa and B. S. Rosales, Advances in Chemical Engineering (Academic Press, 2009) pp. 37–67.
  17. J. Ouyang, C. Schuurmans, Y. Zhang, R. Nagelkerke, X. Wu, D. Kingston, Z. Y. Wang, D. Wilkinson, C. Li, D. M. Leek, Y. Tao, and K. Yu, “Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications,” ACS Appl. Mater. Interfaces3(2), 553–565 (2011). [CrossRef] [PubMed]
  18. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004). [CrossRef]
  19. J. Joo, J. M. Pietryga, J. A. McGuire, S. H. Jeon, D. J. Williams, H. L. Wang, and V. I. Klimov, “A reduction pathway in the synthesis of PbSe nanocrystal quantum dots,” J. Am. Chem. Soc.131(30), 10620–10628 (2009). [CrossRef] [PubMed]
  20. T. Rajh, D. M. Tiede, and M. C. Thurnauer, “Surface modification of TiO2 nanoparticles with bidentate ligands studied by EPR spectroscopy,” J. Non-Cryst. Solids207, 815–820 (1996). [CrossRef]
  21. M. C. Thurnauer, T. Rajh, D. M. Tiede, P. S. Lakkaraju, A. Sousa, A. D. Garnovskii, D. A. Garnovskii, B. O. Roos, C. Vallance, and B. R. Wood, “Surface modification of TiO2: correlation between structure, charge separation, and reduction properties,” Acta Chem. Scand. A51, 610–618 (1997). [CrossRef]
  22. L. Murruni, F. Conde, G. Leyva, and M. I. Litter, “Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors,” Appl. Catal. B84(3-4), 563–569 (2008). [CrossRef]
  23. L. Murruni, G. Leyva, and M. I. Litter, “Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders,” Catal. Today129(1-2), 127–135 (2007). [CrossRef]
  24. A. M. Smith and S. Nie, “Semiconductor nanocrystals: Structure, properties, and band gap engineering,” Acc. Chem. Res.43(2), 190–200 (2010). [CrossRef] [PubMed]
  25. M. Nirmal and L. Brus, “Luminescence photophysics in semiconductor nanocrystals,” Acc. Chem. Res.32(5), 407–414 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited