OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11209–11214

Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications

Nan-Kuang Chen, Yu-Hsin Hsieh, and Yi-Kun Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11209-11214 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the optical measurements of heart-beat pulse rate and also elasticity of a polymeric tube, using a tapered fiber Mach-Zehnder interferometer. This device has two abrupt tapers in the Er/Yb codoped fiber and thus fractional amount of core mode is converted into cladding modes at the first abrupt taper. The core and cladding modes propagate through different optical paths and meet again at the second abrupt taper to produce interferences. The mechanical vibration signals generated by the blood vessels and by an inflated polymeric tube can perturb the optical paths of resonant modes to move around the resonant wavelengths. Thus, the cw laser signal is modulated to become pulses to reflect the heart-beat pulse rate and the elasticity of a polymeric tube, respectively.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(260.3160) Physical optics : Interference
(130.3990) Integrated optics : Micro-optical devices

ToC Category:

Original Manuscript: March 21, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 25, 2013
Published: April 30, 2013

Nan-Kuang Chen, Yu-Hsin Hsieh, and Yi-Kun Lee, "Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications," Opt. Express 21, 11209-11214 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express19(24), 23831–23844 (2011). [CrossRef] [PubMed]
  2. A. Amelink, T. Christiaanse, and H. J. C. M. Sterenborg, “Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation,” Opt. Lett.34(10), 1525–1527 (2009). [CrossRef] [PubMed]
  3. J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett.35(12), 2094–2096 (2010). [CrossRef] [PubMed]
  4. J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, “Glucose sensing in human epidermis using mid-infrared photoacoustic detection,” Biomed. Opt. Express3(4), 667–680 (2012). [CrossRef] [PubMed]
  5. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett.26(13), 992–994 (2001). [CrossRef] [PubMed]
  6. M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express16(17), 12973–12986 (2008). [CrossRef] [PubMed]
  7. S. Liang, C. Zhang, W. Lin, L. Li, C. Li, X. Feng, and B. Lin, “Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring,” Opt. Lett.34(12), 1858–1860 (2009). [CrossRef] [PubMed]
  8. J. R. Guzman-Sepulveda, I. Hernandez-Romano, M. Torres-Cisneros, and D. A. May-Arrioja, “Fiber optic vibration sensor based on multimode interference effects,” in Proc. of CLEO 2012, JW2A (2012). [CrossRef]
  9. B. P. B. Downing, A. van der Horst, M. Miao, F. W. Keeley, and N. R. Forde, “Probing the elasticity of short proteins with optical tweezers,” in Proc. of OTA 2009, OTuA3 (2009). [CrossRef]
  10. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express14(3), 1106–1112 (2006). [CrossRef] [PubMed]
  11. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett.33(9), 1004–1006 (2008). [CrossRef] [PubMed]
  12. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008). [CrossRef] [PubMed]
  13. K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photon. Technol. Lett.14(11), 1575–1577 (2002). [CrossRef]
  14. N. K. Chen, T. H. Yang, Z. Z. Feng, Y. N. Chen, and C. Lin, “Cellular-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett.24, 842–844 (2012).
  15. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express20(10), 11109–11120 (2012). [CrossRef] [PubMed]
  16. M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Opt. Lett.37(11), 1940–1942 (2012). [CrossRef] [PubMed]
  17. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett.37(21), 4480–4482 (2012). [CrossRef] [PubMed]
  18. Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, P. Lu, V. R. Bhardwaj, and X. Bao, “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Opt. Express21(3), 3031–3042 (2013). [CrossRef] [PubMed]
  19. B. Li, L. Jiang, S. Wang, J. Yang, M. Wang, and Q. Chen, “High sensitivity Mach–Zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers,” Opt. Laser Technol.44(3), 640–645 (2012). [CrossRef]
  20. Z. Tian and S. S. H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009). [CrossRef]
  21. N. K. Chen and Z. Z. Feng, “Effect of gain-dependent phase shift for tunable abrupt-tapered Mach-Zehnder interferometers,” Opt. Lett.35(12), 2109–2111 (2010). [CrossRef] [PubMed]
  22. L. Su and S. R. Elliott, “All-fiber microcantilever sensor monitored by a low-cost fiber-to-tip structure with subnanometer resolution,” Opt. Lett.35(8), 1212–1214 (2010). [CrossRef] [PubMed]
  23. A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, “Performance enhancement of vibration sensing employing multiple phase-shifted fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.29(22), 3453–3460 (2011). [CrossRef]
  24. L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett.23(1), 18–20 (2011). [CrossRef]
  25. Z. Z. Feng, Y. H. Hsieh, and N. K. Chen, “Successive asymmetric abrupt tapers for tunable narrowband fiber comb filters,” IEEE Photon. Technol. Lett.23(7), 438–440 (2011). [CrossRef]
  26. N. K. Chen, Z. Z. Feng, J. J. Wang, S. K. Liaw, and H. C. Chui, “Interferometric interrogation of inclination and displacement based on tapered fiber Mach-Zehnder interferometers,” revised to IEEE Sensors Journal.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited