OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11215–11226

Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths

Weibin Wang, Hua Yang, Pinghua Tang, Chujun Zhao, and Jing Gao  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11215-11226 (2013)
http://dx.doi.org/10.1364/OE.21.011215


View Full Text Article

Enhanced HTML    Acrobat PDF (2398 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the generalized nonlinear Schrödinger equation, we present a numerical study of trapping of dispersive waves by solitons during supercontinuum generation in photonic crystal fibers pumped with femtosecond pulses in the anomalous dispersion region. Numerical simulation results show that the generated supercontinuum is bounded by two branches of dispersive waves, namely blue-shifted dispersive waves (B-DWs) and red-shifted dispersive waves (R-DWs). We find a novel phenomenon that not only B-DWs but also R-DWs can be trapped by solitons across the zero-dispersion wavelength when the group-velocity matching between the soliton and the dispersive wave is satisfied, which may led to the generation of new spectral components via mixing of solitons and dispersive waves. Mixing of solitons with dispersive waves has been shown to play an important role in shaping not only the edge of the supercontinuum, but also its central part around the higher zero-dispersion wavelength. Further, we show that the phenomenon of soliton trapping of dispersive waves in photonic crystal fibers with two zero-dispersion wavelengths has a very close relationship with pumping power and the interval between two zero-dispersion wavelengths. In order to clearly display the evolution of soliton trapping of dispersive waves, the spectrogram of output pulses is observed using cross-correlation frequency-resolved optical gating technique (XFROG).

© 2013 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 4, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: April 17, 2013
Published: May 1, 2013

Citation
Weibin Wang, Hua Yang, Pinghua Tang, Chujun Zhao, and Jing Gao, "Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths," Opt. Express 21, 11215-11226 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11215


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003). [CrossRef] [PubMed]
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature424(6948), 511–515 (2003). [CrossRef] [PubMed]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  5. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express12(6), 1045–1054 (2004). [CrossRef] [PubMed]
  6. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express13(16), 6181–6192 (2005). [CrossRef] [PubMed]
  7. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express12(15), 3471–3480 (2004). [CrossRef] [PubMed]
  8. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express12(19), 4614–4624 (2004). [CrossRef] [PubMed]
  9. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express15(18), 11553–11563 (2007). [CrossRef] [PubMed]
  10. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301(5640), 1705–1708 (2003). [CrossRef] [PubMed]
  11. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016615 (2004). [CrossRef] [PubMed]
  12. T. V. Andersen, K. M. Hilligsøe, C. K. Nielsen, J. Thøgersen, K. P. Hansen, S. R. Keiding, and J. J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Opt. Express12(17), 4113–4122 (2004). [CrossRef] [PubMed]
  13. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. J. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express12(26), 6498–6507 (2004). [CrossRef] [PubMed]
  14. P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express13(19), 7535–7540 (2005). [CrossRef] [PubMed]
  15. S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero dispersion points,” Phys. Rev. A83(2), 023808 (2011). [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  17. A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express16(7), 4858–4865 (2008). [CrossRef] [PubMed]
  18. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87(20), 203901 (2001). [CrossRef] [PubMed]
  19. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995). [CrossRef] [PubMed]
  20. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses,” Opt. Express19(23), 22557–22562 (2011). [CrossRef] [PubMed]
  21. G. Q. Chang, L.-J. Chen, and F. X. Kärtner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express19(7), 6635–6647 (2011). [CrossRef] [PubMed]
  22. S. F. Wang, J. G. Hu, H. R. Guo, and X. L. Zeng, “Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths,” Opt. Express21(3), 3067–3072 (2013). [CrossRef] [PubMed]
  23. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett.29(20), 2411–2413 (2004). [CrossRef] [PubMed]
  24. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett.95(21), 213902 (2005). [CrossRef] [PubMed]
  25. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016619 (2005). [CrossRef] [PubMed]
  26. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express14(21), 9854–9863 (2006). [CrossRef] [PubMed]
  27. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys.82(2), 1287–1299 (2010). [CrossRef]
  28. R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express18(25), 25993–25998 (2010). [CrossRef] [PubMed]
  29. B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express18(24), 24729–24734 (2010). [CrossRef] [PubMed]
  30. C. Liu, E. J. Rees, T. Laurila, S. Jian, and C. F. Kaminski, “Periodic interactions between solitons and dispersive waves during the generation of non-coherent supercontinuum radiation,” Opt. Express20(6), 6316–6324 (2012). [CrossRef] [PubMed]
  31. L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B77(2–3), 307–311 (2003). [CrossRef]
  32. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express14(25), 11997–12007 (2006). [CrossRef] [PubMed]
  33. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express16(19), 14435–14447 (2008). [CrossRef] [PubMed]
  34. J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express17(3), 1502–1507 (2009). [CrossRef] [PubMed]
  35. S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König, “Evolution of light trapped by a soliton in a microstructured fiber,” Opt. Express17(16), 13588–13600 (2009). [CrossRef] [PubMed]
  36. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12(11), 113001 (2010). [CrossRef]
  37. N. Nishizawa and T. Goto, “Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating,” Opt. Express8(6), 328–334 (2001). [CrossRef] [PubMed]
  38. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zero-dispersion wavelength,” Opt. Express10(21), 1151–1160 (2002). [CrossRef] [PubMed]
  39. N. Nishizawa and T. Goto, “Pulse Trapping by Ultrashort Soliton Pulses in Optical Fibers Across Zero-Dispersion Wavelength,” Opt. Lett.27(3), 152–154 (2002). [CrossRef] [PubMed]
  40. N. Nishizawa and T. Goto, “Ultrafast All Optical Switching by Use of Pulse Trapping Across Zero-Dispersion Wavelength,” Opt. Express11(4), 359–365 (2003). [CrossRef] [PubMed]
  41. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007). [CrossRef]
  42. A. V. Gorbach and D. V. Skryabin, “Bouncing of a dispersive pulse on an accelerating soliton and stepwise frequency conversion in optical fibers,” Opt. Express15(22), 14560–14565 (2007). [CrossRef] [PubMed]
  43. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A76(5), 053803 (2007). [CrossRef]
  44. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett.34(2), 115–117 (2009). [CrossRef] [PubMed]
  45. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” J. Lightwave Technol.27(11), 1556–1564 (2009). [CrossRef]
  46. H. Y. Liu, Y. T. Dai, C. Xu, J. Wu, K. Xu, Y. Li, X. B. Hong, and J. T. Lin, “Dynamics of Cherenkov radiation trapped by a soliton in photonic-crystal fibers,” Opt. Lett.35(23), 4042–4044 (2010). [CrossRef] [PubMed]
  47. A. C. Judge, O. Bang, and C. Martijn de Sterke, “Theory of dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical,” J. Opt. Soc. Am. B27(11), 2195–2202 (2010). [CrossRef]
  48. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express10(21), 1215–1221 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited