OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11248–11256

Non-reciprocal magnetoplasmon graphene coupler

Nima Chamanara, Dimitrios Sounas, and Christophe Caloz  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11248-11256 (2013)
http://dx.doi.org/10.1364/OE.21.011248


View Full Text Article

Enhanced HTML    Acrobat PDF (2982 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The non-reciprocity of the edge magnetoplasmon modes of a graphene strip is leveraged to design a non-reciprocal magnetoplasmon graphene coupler, coupling only in one direction. The proposed coupler consists of two coplanar parallel magnetically biased graphene strips. In the forward direction, the modes along the adjacent strip edges of the strips have the same wavenumber and therefore couple to each other. In the backward direction, the modes along the adjacent strip edges have different wavenumbers and therefore no coupling occurs.

© 2013 OSA

OCIS Codes
(000.3110) General : Instruments, apparatus, and components common to the sciences
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 19, 2013
Revised Manuscript: April 13, 2013
Manuscript Accepted: April 15, 2013
Published: May 1, 2013

Citation
Nima Chamanara, Dimitrios Sounas, and Christophe Caloz, "Non-reciprocal magnetoplasmon graphene coupler," Opt. Express 21, 11248-11256 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11248


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 22 306, 666–669 (2004). [CrossRef] [PubMed]
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials6, 183–191 (2007). [CrossRef] [PubMed]
  3. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009). [CrossRef]
  4. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photon.6, 7490758 (2012).
  5. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett.99, 016 803 (2007). [CrossRef]
  6. G. W. Hanson, “Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064 302 (2008). [CrossRef]
  7. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12, 2470–2474 (2012). [CrossRef] [PubMed]
  8. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  9. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature (2012). [CrossRef]
  10. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature (2012). [CrossRef]
  11. T. Echtermeyer, L. Britnell, P. Jasnos, A. Lombardo, R. Gorbachev, A. Grigorenko, A. Geim, A. Ferrari, and K. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun.2(2011). [CrossRef] [PubMed]
  12. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photon.4, 297–301 (2010). [CrossRef]
  13. N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011). [CrossRef] [PubMed]
  14. A. Vakil and N. Engheta, “One-atom-thick reflectors for surface plasmon polariton surface waves on graphene,” Optics Communications285, 3428–3430 (2012). [CrossRef]
  15. S. Thongrattanasiri, I. Silveiro, and F. J. G. de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett.100, 201105 (2012). [CrossRef]
  16. N. Chamanara, D. Sounas, T. Szkopek, and C. Caloz, “Optically transparent and flexible graphene reciprocal and nonreciprocal microwave planar components,” IEEE Microw. Wireless Comp. Lett.22, 360–362 (2012). [CrossRef]
  17. D. L. Sounas and C. Caloz, “Gyrotropy and non-reciprocity of graphene for microwave applications,” IEEE Trans. Microw. Theory Tech.60, 901–914 (2012). [CrossRef]
  18. D. L. Sounas and C. Caloz, “Electromagnetic non-reciprocity and gyrotropy of graphene,” Appl. Phys. Lett.98, 021 911:13 (2011). [CrossRef]
  19. D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, M. Siaj, T. Szkopek, and C. Caloz, “Faraday rotation in magnetically-biased graphene at microwave frequencies,” (2013), under review.
  20. D. L. Sounas and C. Caloz, “Edge surface modes in magnetically biased chemically doped graphene strips,” Appl. Phys. Lett.99, 231 902:13 (2011). [CrossRef]
  21. E. G. Mishchenko, A. V. Shytov, and P. G. Silvestrov, “Guided plasmons in graphene p-njunctions,” Phys. Rev. Lett.104, 156 806 (2010). [CrossRef]
  22. Y. Zhao, K. Wu, and K. M. Cheng, “A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures,” IEEE Trans. Microwave Theory Tech.50, 1844–1848 (2002). [CrossRef]
  23. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).
  24. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, and , “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnology5, 574–578 (2010). [CrossRef] [PubMed]
  25. F. Gunes, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano4, 45954600 (2010). [CrossRef]
  26. Y. Zhu, Z. Sun, Z. Yan, Z. Jin, and J. M. Tour, “Rational design of hybrid graphene films for high-performance transparent electrodes,” ACS Nano5, 64726479 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited