OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11257–11269

First selective mode excitation and amplification in a ribbon core optical fiber

Derrek R. Drachenberg, Michael J. Messerly, Paul H. Pax, Arun Sridharan, John Tassano, and Jay Dawson  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11257-11269 (2013)
http://dx.doi.org/10.1364/OE.21.011257


View Full Text Article

Enhanced HTML    Acrobat PDF (1561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate amplification of a single high-order mode in an optical fiber having an elongated, ribbon-like core having an effective mode area of area of 600 µm2 and an aspect ratio of 13:1. When operated as an amplifier, the double-clad, ytterbium doped, photonic crystal fiber produced 50% slope efficiency and a seed-limited power of 10.5 W, corresponding to a gain of 24 dB. The high order mode remained pure through 20 dB of gain without intervention or realignment.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.2400) Fiber optics and optical communications : Fiber properties
(140.3280) Lasers and laser optics : Laser amplifiers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 16, 2013
Revised Manuscript: March 22, 2013
Manuscript Accepted: March 27, 2013
Published: May 1, 2013

Citation
Derrek R. Drachenberg, Michael J. Messerly, Paul H. Pax, Arun Sridharan, John Tassano, and Jay Dawson, "First selective mode excitation and amplification in a ribbon core optical fiber," Opt. Express 21, 11257-11269 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11257


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron.13(3), 537–545 (2007). [CrossRef]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16(17), 13240–13266 (2008). [CrossRef] [PubMed]
  3. O. Andrusyak, D. Drachenberg, G. B. Venus, V. Smirnov, and L. B. Glebov, “Fiber laser system with kW-level spectrally-combined output,” in Solid State and Diode Laser Technology Review (2008), pp. 3–7.
  4. D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” in Proc. of SPIE, Fiber Lasers VII: Technology, Systems, and Applications, J. W. Dawson, ed. (SPIE, 2011) 7914, 79141F (2011) [CrossRef]
  5. A. Jain, D. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and L. Glebov, “Coherent and spectral beam combining of fiber lasers using volume Bragg gratings,” in Proc. of SPIE, Laser Technology for Defense and Security VI, M. Dubinskii and S. G. Post, eds. (SPIE, 2010) 7686, 768615 (2010). [CrossRef]
  6. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005). [CrossRef]
  7. S. J. McNaught, P. Asman, H. Charles, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, M. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100-kW coherently combined Nd:YAG MOPA laser array - OSA Technical Digest (CD),” in Frontiers in Optics (Optical Society of America, 2009), p. FThD2.
  8. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett.36(16), 3118–3120 (2011). [CrossRef] [PubMed]
  9. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev.2(6), 429–448 (2008). [CrossRef]
  10. L. J. Cooper, P. Wang, R. B. Williams, J. K. Sahu, W. A. Clarkson, A. M. Scott, and D. Jones, “High-power Yb-doped multicore ribbon fiber laser,” Opt. Lett.30(21), 2906–2908 (2005). [CrossRef] [PubMed]
  11. V. Khitrov and V. Shkunov, “Er-doped high aspect ratio core (HARC) rectangular fiber producing 5-mJ, 13-nsec pulses at 1572 nm,” in Advanced Solid-State Photonics (2012), p. AW4A.5.
  12. D. A. Rockwell, V. V. Shkunov, and J. R. Marciante, “Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package,” Opt. Express19(15), 14746–14762 (2011). [CrossRef] [PubMed]
  13. D. A. Rockwell, V. V. Shkunov, and J. R. Marciante, “Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package,” Opt. Express19(15), 14746–14762 (2011). [CrossRef] [PubMed]
  14. R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett.15(5), 670–672 (2003). [CrossRef]
  15. A. L. Bullington, P. H. Pax, A. K. Sridharan, J. E. Heebner, M. J. Messerly, and J. W. Dawson, “Mode conversion in rectangular-core optical fibers,” Appl. Opt.51(1), 84–88 (2012). [CrossRef] [PubMed]
  16. A. K. Sridharan, P. H. Pax, J. E. Heebner, D. R. Drachenberg, J. P. Armstrong, and J. W. Dawson, “Mode-converters for rectangular-core fiber amplifiers to achieve diffraction-limited power scaling,” Opt. Express20(27), 28792–28800 (2012). [CrossRef] [PubMed]
  17. N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving Gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt.46(22), 5147–5157 (2007). [CrossRef] [PubMed]
  18. M. SeGall, V. Rotar, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Binary volume phase masks in photo-thermo-refractive glass,” Opt. Lett.37(7), 1190–1192 (2012). [CrossRef] [PubMed]
  19. W. Mohammed, M. Pitchumani, A. Mehta, and E. Johnson, “Selective excitation of the LP11 mode in step index fiber using a phase mask,” Opt. Eng.45, 074602 (2006). [CrossRef]
  20. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  21. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11(1), 48–53 (2003). [CrossRef] [PubMed]
  22. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express19(14), 13008–13019 (2011). [CrossRef] [PubMed]
  23. H. M. Pask, J. L. Archambault, D. C. Hanna, L. Reekie, P. S. J. Russell, J. E. Townsend, and A. C. Tropper, “Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1 μm region,” Electron. Lett.30(11), 863–865 (1994). [CrossRef]
  24. Y. Zhao and L. Zhu, “On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers,” Opt. Express20(6), 6375–6384 (2012). [CrossRef] [PubMed]
  25. R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B19(7), 1521–1534 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited