OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11276–11293

Phase–space non-paraxial propagation modes of optical fields in any state of spatial coherence

Román Castañeda and Hernán Muñoz  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11276-11293 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The non-paraxial marginal power spectrum is decomposed in propagation modes, so that the zeroth-order mode is only emitted by the radiant point sources at the aperture plane, while the modes of higher orders than zero are only emitted by the virtual point sources. It allows representing the non-paraxial propagation of optical fields in arbitrary states of spatial coherence and along arbitrary distances from the aperture plane without approximations, by simply using the power distribution and the spatial coherence state at the aperture plane as entries. This modal expansion is potentially useful in micro-diffraction and spatial coherence modulation.

© 2013 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes

ToC Category:
Coherence and Statistical Optics

Original Manuscript: December 3, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 30, 2013
Published: May 1, 2013

Román Castañeda and Hernán Muñoz, "Phase–space non-paraxial propagation modes of optical fields in any state of spatial coherence," Opt. Express 21, 11276-11293 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Wang, C. Zhao, and X. Lu, “Nonparaxial propagation properties for a partially coherent anomalous hollow beam,” Optik (Stuttg.)123(3), 202–207 (2012). [CrossRef]
  2. X. Li and Y. Cai, “Nonparaxial propagation of a partially coherent dark hollow beam,” Appl. Phys. B102(1), 205–213 (2011). [CrossRef]
  3. H. Yu, L. Xiong, and B. Lü, “Nonparaxial Lorentz and Lorentz–Gauss beams,” Optik (Stuttg.)121(16), 1455–1461 (2010). [CrossRef]
  4. B. Tang and M. Jiang, “Propagation properties of vectorial Hermite–cosine–Gaussian beams beyond the paraxial approximation,” J. Mod. Opt.56(8), 955–962 (2009). [CrossRef]
  5. A. V. Novitsky and D. V. Novitsky, “Nonparaxial Airy beams: role of evanescent waves,” Opt. Lett.34(21), 3430–3432 (2009). [CrossRef] [PubMed]
  6. Y. Zhang, “Nonparaxial propagation analysis of elliptical Gaussian beams diffracted by a circular aperture,” Opt. Commun.248(4-6), 317–326 (2005). [CrossRef]
  7. H. Laabs, “Propagation of Hermite-Gaussian-beams beyond the paraxial approximation,” Opt. Commun.147(1-3), 1–4 (1998). [CrossRef]
  8. H. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944). [CrossRef]
  9. J. H. Wu, “Modeling of near-field optical diffraction from a subwavelength aperture in a thin conducting film,” Opt. Lett.36(17), 3440–3442 (2011). [CrossRef] [PubMed]
  10. K. Duan and B. Lü, “Nonparaxial diffraction of vectorial plane waves at a small aperture,” Opt. Laser Technol.37(3), 193–197 (2005). [CrossRef]
  11. G. Zhao, E. Zhang, and B. Lü, “Spectral switches of partially coherent nonparaxial beams diffracted at an aperture,” Opt. Commun.282(2), 167–171 (2009). [CrossRef]
  12. H. Wang and W. She, “Modulation instability and interaction of non-paraxial beams in self-focusing Kerr media,” Opt. Commun.254(1-3), 145–151 (2005). [CrossRef]
  13. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995). Equation (4).4–25) is the Wolf’s integral equation.
  14. R. Castañeda and J. Garcia-Sucerquia, “Non-approximated numerical modeling of propagation of light in any state of spatial coherence,” Opt. Express19(25), 25022–25034 (2011). [CrossRef] [PubMed]
  15. M. Testorf, B. Hennelly, and J. Ojeda-Castaneda, Phase-space optics: fundamentals and applications (Mc Graw-Hill, New York, 2010).
  16. A. Torre, Linear ray and wave optics in the phase-space (Elsevier, 2005).
  17. R. Castañeda, “Phase-space representation of electromagnetic radiometry,” Phys. Scr.79, 035302 (10pp) (2009).
  18. R. Castañeda, R. Betancur, J. Herrera, and J. Carrasquilla, “Phase-space representation and polarization domains of random electromagnetic fields,” Appl. Opt.47(22), E27–E38 (2008). [CrossRef] [PubMed]
  19. C. J. Sheppard and K. G. Larkin, “Wigner function for nonparaxial wave fields,” J. Opt. Soc. Am. A18(10), 2486–2490 (2001). [CrossRef] [PubMed]
  20. R. Castañeda, G. Cañas-Cardona, and J. Garcia-Sucerquia, “Radiant, virtual, and dual sources of optical fields in any state of spatial coherence,” J. Opt. Soc. Am. A27(6), 1322–1330 (2010). [CrossRef] [PubMed]
  21. R. Castañeda, H. Muñoz-Ossa, and G. Cañas-Cardona, “The structured spatial coherence support,” J. Mod. Opt.58(11), 962–972 (2011). [CrossRef]
  22. R. Castañeda, “The optics of spatial coherence wavelets,” in: Advances in imaging and electron physics164, P. W. Hawkes, ed. (Academic Press, 2010), pp. 29–255.
  23. Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High-power (>110 mW) superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett.22(10), 721–723 (2010). [CrossRef]
  24. Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High Power and Stable High Coupling Efficiency (66%) Superluminescent Light Emitting Diodes by Using Active Multi-Mode Interferometer,” IEICE Trans. Elec.E94-C, 862–864 (2011).
  25. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, 1993).
  26. R. Betancur and R. Castañeda, “Spatial coherence modulation,” J. Opt. Soc. Am. A26(1), 147–155 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (10590 KB)     
» Media 2: MOV (13132 KB)     
» Media 3: MOV (11513 KB)     
» Media 4: MOV (11653 KB)     
» Media 5: MOV (14294 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited