OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11309–11314

Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sensing applications

Haifeng Qi, Zhiqiang Song, Shujuan Li, Jian Guo, Chang Wang, and Gang-Ding Peng  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11309-11314 (2013)
http://dx.doi.org/10.1364/OE.21.011309


View Full Text Article

Enhanced HTML    Acrobat PDF (2105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectral characteristics of four different types of apodized fiber Bragg gratings with a single π phase shift are analyzed based on the simulation. The 2-discrete Gaussian apodization is proved to have the most effective suppression to grating side mode. A novel asymmetrical distributed feedback fiber laser based on this apodization structure is presented and fabricated as well. The grating has a −20 dB side-mode suppression. The laser exhibits a high power ratio of backward to forward outputs. It has a relative intensity noise of −90dB/Hz and a linewidth of 20k Hz operating in a single polarization longitudinal mode.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3570) Lasers and laser optics : Lasers, single-mode
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 23, 2013
Revised Manuscript: March 22, 2013
Manuscript Accepted: April 4, 2013
Published: May 1, 2013

Citation
Haifeng Qi, Zhiqiang Song, Shujuan Li, Jian Guo, Chang Wang, and Gang-Ding Peng, "Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sensing applications," Opt. Express 21, 11309-11314 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11309


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett.19(24), 2101–2103 (1994). [CrossRef] [PubMed]
  2. D. Y. Stepanov, J. Canning, L. Poladian, R. Wyatt, G. Maxwell, R. Smith, and R. Kashyap, “Apodized distributed-feedback fiber laser,” Opt. Fiber Technol.5(2), 209–214 (1999). [CrossRef]
  3. S. W. Lovseth and E. Ronnekleiv, “Fundamental and higher order mode thresholds of DFB fiber laers,” J. Lightwave Technol.20(3), 494–501 (2002). [CrossRef]
  4. K. Yelen, L. B. Hickey, and M. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004). [CrossRef]
  5. S. Foster, A. Tikhomirov, M. Englund, H. Inglis, G. Edvell, and M. Milnes, A 16 channel fibre laser sensor array,” in Proc. of IEEE on Optical Fiber Technology/Australian Optical Society (IEEE,2006), pp.40–42.
  6. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett.4(6), 428–432 (2007). [CrossRef]
  7. A. Tikhomirov and S. Foster, “DFB FL sensor cross-coupling reduction,” J. Lightwave Technol.25(2), 533–538 (2007). [CrossRef]
  8. G. Cranch, G. H. Flockhart, and C. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J.8(7), 1161–1172 (2008). [CrossRef]
  9. J. He, F. Li, T. Xu, Y. Wang, and Y. Liu, “High performance distributed feedback fiber laser sensor array system,” Proc. SPIE7634, 76340K, 76340K-9 (2009). [CrossRef]
  10. S. Foster and A. Tikhomirov, “Pump-noise contribution to frequency noise and linewidth of distributed feedback fiber lasers,” IEEE J. Quantum Electron.46(5), 734–741 (2010). [CrossRef]
  11. A. C. L. Wong, W. H. Chung, H. Y. Tam, and C. Lu, “Ultra-short distributed feedback fiber laser with sub-kilohertz linewidth for sensing applications,” Laser Phys.21(1), 163–168 (2011). [CrossRef]
  12. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique,” Opt. Lett.20(20), 2051–2053 (1995). [CrossRef] [PubMed]
  13. L. Poladian, B. Ashton, W. E. Padden, A. Michie, and C. Marra, “Characterisation of phase-shifts in gratings fabricated by over-dithering and simple displacement,” Opt. Fiber Technol.9(4), 173–188 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited