OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11349–11355

Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array

Liangping Xia, Zheng Yang, Shaoyun Yin, Wenrui Guo, Shuhong Li, Wanyi Xie, Deping Huang, Qiling Deng, Haofei Shi, Hongliang Cui, and Chunlei Du  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11349-11355 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A sensitive surface enhanced Raman scattering (SERS) substrate with metallic nanogap array (MNGA) is fabricated by etching of an assembled polystyrene (PS) spheres array, followed by the coating of a metal film. The substrate is reproducible in fabrication and sensitive due to the nanogap coupling resonance (NGCR) enhancement. The NGCR is analyzed with the finite difference time domain (FDTD) method, and the relationship between the gap parameter and the field enhancement is obtained. Experimental measurements of R6G on demonstrate that the enhancement factor (EF) of the MNGA SERS substrate is increased by more than two fold compared with the control sample.

© 2013 OSA

OCIS Codes
(300.6450) Spectroscopy : Spectroscopy, Raman
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(230.4555) Optical devices : Coupled resonators
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: February 19, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 6, 2013
Published: May 1, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Liangping Xia, Zheng Yang, Shaoyun Yin, Wenrui Guo, Shuhong Li, Wanyi Xie, Deping Huang, Qiling Deng, Haofei Shi, Hongliang Cui, and Chunlei Du, "Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array," Opt. Express 21, 11349-11355 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005). [CrossRef] [PubMed]
  2. T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010). [CrossRef] [PubMed]
  3. A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods53(2), 221–233 (2003). [CrossRef] [PubMed]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  5. J. A. Creighton, “Surface Raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: The determination of adsorbate orientation from SERS relative intensities,” Surf. Sci.124(1), 209–219 (1983). [CrossRef]
  6. W. E. Doering and S. Nie, “Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement,” J. Phys. Chem. B106(2), 311–317 (2002). [CrossRef]
  7. E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection,” J. Chem. Phys.125(20), 204701 (2006). [CrossRef] [PubMed]
  8. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett.341(1), 1–6 (2001). [CrossRef]
  9. E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc.39(9), 1127–1134 (2008). [CrossRef]
  10. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009). [CrossRef] [PubMed]
  11. C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009). [CrossRef] [PubMed]
  12. R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, “Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers,” Nanotechnology22(10), 105303 (2011). [CrossRef] [PubMed]
  13. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006). [CrossRef]
  14. K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009). [CrossRef]
  15. S. M. Mahurin, J. John, M. J. Sepaniak, and S. Dai, “A Reusable Surface-Enhanced Raman Scattering (SERS) Substrate Prepared by Atomic Layer Deposition of Alumina on a Multi-Layer Gold and Silver Film,” Appl. Spectrosc.65(4), 417–422 (2011). [CrossRef] [PubMed]
  16. Y. Chen, L. Karvonen, A. Säynätjoki, C. Ye, A. Tervonen, and S. Honkanen, “Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application,” Opt. Mater. Express1(2), 164–172 (2011). [CrossRef]
  17. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19(20), 19310–19322 (2011). [CrossRef] [PubMed]
  18. J. Petschulat, D. Cialla, N. Janunts, C. Rockstuhl, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Popp, A. Tünnermann, F. Lederer, and T. Pertsch, “Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering,” Opt. Express18(5), 4184–4197 (2010). [CrossRef] [PubMed]
  19. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express14(2), 847–857 (2006). [CrossRef] [PubMed]
  20. K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003). [CrossRef]
  21. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of Arrays of Isolated Spherical Cavities by Self-Assembly of Polystyrene Spheres on Self-Assembled Pre-patterned Macroporous Films,” Adv. Mater.16(1), 90–93 (2004). [CrossRef]
  22. M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals,” Langmuir17(3), 903–907 (2001). [CrossRef]
  23. E. Palik and G. Ghosh, Handbook of optical constants of solids. Academic, New York, 1985.
  24. T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres,” Appl. Phys. Lett.72(16), 1957 (1998). [CrossRef]
  25. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  26. M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett.35(5), 760–762 (2010). [CrossRef] [PubMed]
  27. S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5), 1722–1727 (2010). [CrossRef] [PubMed]
  28. D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited