OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11368–11375

Solvent-free fluidic organic dye lasers

Eun Young Choi, Loic Mager, Tran Thi Cham, Kokou D. Dorkenoo, Alain Fort, Jeong Weon Wu, Alberto Barsella, and Jean-Charles Ribierre  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11368-11375 (2013)
http://dx.doi.org/10.1364/OE.21.011368


View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

© 2013 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3510) Lasers and laser optics : Lasers, fiber
(160.4890) Materials : Organic materials
(230.7370) Optical devices : Waveguides
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 14, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 28, 2013
Published: May 2, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Eun Young Choi, Loic Mager, Tran Thi Cham, Kokou D. Dorkenoo, Alain Fort, Jeong Weon Wu, Alberto Barsella, and Jean-Charles Ribierre, "Solvent-free fluidic organic dye lasers," Opt. Express 21, 11368-11375 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11368


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Ribierre, T. Aoyama, T. Muto, Y. Imase, and T. Wada, “Charge transport properties in liquid carbazole,” Org. Electron.9(3), 396–400 (2008). [CrossRef]
  2. B. A. Kamino, T. P. Bender, and R. A. Klenkler, “Hole mobility of a liquid organic semiconductor,” J. Phys. Chem. Lett.3(8), 1002–1006 (2012). [CrossRef]
  3. S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, and T. Nakanishi, “Solvent-free luminescent organic liquids,” Angew. Chem. Int. Ed. Engl.51(14), 3391–3395 (2012). [CrossRef] [PubMed]
  4. J. C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, and T. Wada, “Influence of the liquid carbazole concentration on charge trapping in C60 sensitized photorefractive polymers,” J. Appl. Phys.102(3), 033106 (2007). [CrossRef]
  5. D. Xu and C. Adachi, “Organic light-emitting diode with liquid emitting layer,” Appl. Phys. Lett.95(5), 053304 (2009). [CrossRef]
  6. S. Hirata, K. Kubota, H. H. Jung, O. Hirata, K. Goushi, M. Yahiro, and C. Adachi, “Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer,” Adv. Mater.23(7), 889–893 (2011). [CrossRef] [PubMed]
  7. C. H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, and C. Adachi, “Uniform and refreshable liquid electroluminescent device with a back side reservoir,” Appl. Phys. Lett.101(11), 113302 (2012). [CrossRef]
  8. H. J. Snaith, S. M. Zakeeruddin, Q. Wang, P. Péchy, and M. Grätzel, “Dye-sensitized solar cells incorporating a “liquid” hole-transporting material,” Nano Lett.6(9), 2000–2003 (2006). [CrossRef] [PubMed]
  9. J. C. Ribierre, T. Aoyama, T. Muto, and P. André, “Hybrid organic-inorganic liquid bistable memory devices,” Org. Electron.12(11), 1800–1805 (2011). [CrossRef]
  10. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011). [CrossRef]
  11. Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics4(4), 043002 (2010). [CrossRef]
  12. B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng.13(2), 307–311 (2003). [CrossRef]
  13. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett.94(16), 161110 (2009). [CrossRef]
  14. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009). [CrossRef] [PubMed]
  15. Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A.107(37), 16039–16042 (2010). [CrossRef] [PubMed]
  16. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006). [CrossRef] [PubMed]
  17. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1-2), 145–158 (2008). [CrossRef]
  18. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express15(7), 3962–3967 (2007). [CrossRef] [PubMed]
  19. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007). [CrossRef] [PubMed]
  20. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007). [CrossRef]
  21. T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fiber waveguide structure,” Electron. Lett.38(2), 67–68 (2002). [CrossRef]
  22. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated polymer microcavities,” Nature382(6593), 695–697 (1996). [CrossRef]
  23. A. Dodabalapur, M. Berggren, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature389(6650), 466–469 (1997). [CrossRef]
  24. R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett.73(24), 3492–3494 (1998). [CrossRef]
  25. A. K. Sheridan, A. R. Buckley, A. M. Fox, A. Bacher, D. D. C. Bradley, and I. D. W. Samuel, “Efficient energy transfer in organic thin films – implications for organic lasers,” J. Appl. Phys.92(11), 6367–6371 (2002). [CrossRef]
  26. A. Ruseckas, J. C. Ribierre, P. E. Shaw, S. V. Staton, P. L. Burn, and I. D. W. Samuel, “Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors,” Appl. Phys. Lett.95(18), 183305 (2009). [CrossRef]
  27. E. Gautier-Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, “Effect of coumarin on blue light-emitting diodes based on carbazole polymers,” J. Appl. Phys.83(8), 4236 (1998). [CrossRef]
  28. V. G. Kozlov, G. Parthasarathy, P. E. Burrows, S. R. Forrest, Y. You, and M. E. Thompson, “Optically pumped blue organic semiconductor lasers,” Appl. Phys. Lett.72(2), 144 (1998). [CrossRef]
  29. T. Förster, “Transfer mechanisms of electronic excitation,” Discuss. Faraday Soc.27, 7 (1959). [CrossRef]
  30. G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, “Light amplification and gain in polyfluorene waveguides,” Appl. Phys. Lett.81(3), 415 (2002). [CrossRef]
  31. C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, and U. Scherf, “Blue green stimulated emission from a high gain conjugated polymer,” Appl. Phys. Lett.71(18), 2566 (1997). [CrossRef]
  32. X. Zhu, D. Gindre, N. Mercier, P. Frère, and J.-M. Nunzi, “Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer,” Adv. Mater.15(11), 906–909 (2003). [CrossRef]
  33. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, and G. N. Robertson, “Core-resonance capillary-fiber whispering-gallery-mode laser,” Opt. Lett.17(18), 1280–1282 (1992). [CrossRef] [PubMed]
  34. B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett.92(16), 163309 (2008). [CrossRef]
  35. T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen, and T. Mappes, “Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip12(19), 3734–3739 (2012). [CrossRef] [PubMed]
  36. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett.85(11), 1886 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited