OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11415–11424

Phase-preserving parametric wavelength conversion to SWIR band in highly nonlinear dispersion stabilized fiber

Faezeh Gholami, Bill P.-P. Kuo, Sanja Zlatanovic, Nikola Alic, and Stojan Radic  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11415-11424 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The first successful translation of a phase modulated optical signal over 80 THz, from the near infrared to the short-wave infrared (SWIR) band is demonstrated. A signal, phase-modulated at 10 Gbps, was received in an error-free manner in the SWIR(1.7–2.2 μm) band. A new class of highly nonlinear fiber with reduced dispersion fluctuation was utilized as the platform for this phase-preserving distant parametric conversion.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 21, 2013
Revised Manuscript: April 23, 2013
Manuscript Accepted: April 24, 2013
Published: May 2, 2013

Faezeh Gholami, Bill P.-P. Kuo, Sanja Zlatanovic, Nikola Alic, and Stojan Radic, "Phase-preserving parametric wavelength conversion to SWIR band in highly nonlinear dispersion stabilized fiber," Opt. Express 21, 11415-11424 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Jiang, C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Translation of Gbps phase-modulated optical signal from near-infrared to visible band,” J. Lightwave Technol.26(1), 131–137 (2008). [CrossRef]
  2. J. Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, and S. Radic, “Tunable parametric all-fiber short-wavelength IR transmitter,” J. Lightwave Technol.28(4), 443–447 (2010). [CrossRef]
  3. R. G. DeVoe and R. G. Brewer, “Coherence phenomena in phase-modulation laser spectroscopy,” Phys. Rev. A26(1), 705–708 (1982). [CrossRef]
  4. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).
  5. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Sel. Top. Quantum Electron.18(7), 1062–1072 (1982). [CrossRef]
  6. S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly nonlinear optical fiber,” IEICE Trans. Electron.E88-C(5), 859–869 (2005). [CrossRef]
  7. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28(22), 2225–2227 (2003). [CrossRef] [PubMed]
  8. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express16(25), 20374–20381 (2008). [CrossRef] [PubMed]
  9. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010). [CrossRef]
  10. J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express18(2), 439–445 (2010). [CrossRef] [PubMed]
  11. F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. P.-P. Kuo, C.-S. Brès, A. O. J. Wiberg, N. Alic, and S. Radic, “10Gbps parametric short-wave infrared transmitter,” in Proc. OFC/NFOEC 2011, paper OThC6, 2011. [CrossRef]
  12. T. Okuno, T. Nakanishi, M. Hirano, and M. Onishi, “Practical considerations for the application of highly nonlinear fibers,” in Proc. OFC/NFOEC 2007, paper OTuJ1, 2007. [CrossRef]
  13. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fiber and their application,” IEEE J. Sel. Top. Quantum Electron.15(1), 103–113 (2009). [CrossRef]
  14. S. Moro, A. Peric, N. Alic, B. Stossel, and S. Radic, “Phase noise in fiber-optic parametric amplifiers and converters and its impact on sensing and communication systems,” Opt. Express18(20), 21449–21460 (2010). [CrossRef] [PubMed]
  15. M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics52(1), 1072–1080 (1995). [CrossRef] [PubMed]
  16. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004). [CrossRef]
  17. B. P.-P. Kuo and S. Radic, “Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations,” Opt. Express20(7), 7716–7725 (2012). [CrossRef] [PubMed]
  18. B. P.-P. Kuo, M. Hirano, and S. Radic, “Continuous-wave, short-wavelength infrared mixer using dispersion-stabilized highly-nonlinear fiber,” Opt. Express20(16), 18422–18431 (2012). [CrossRef] [PubMed]
  19. A. Wada, T. Nozawa, T.-O. Tsun, and R. Yamauchi, “Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun.E76-B, 345–351 (1993).
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006).
  21. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 microm,” Opt. Lett.21(24), 1966–1968 (1996). [CrossRef] [PubMed]
  22. M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express12(1), 136–142 (2004). [CrossRef] [PubMed]
  23. E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett.21(24), 1807–1809 (2009). [CrossRef]
  24. V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited