OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11425–11440

Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy

Florian O. Fahrbach, Vasily Gurchenkov, Kevin Alessandri, Pierre Nassoy, and Alexander Rohrbach  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11425-11440 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of main challenges in light-sheet microscopy is to design the light-sheet as extended and thin as possible - extended to cover a large field of view, thin to optimize resolution and contrast. However, a decrease of the beam’s waist also decreases the illumination beam’s depth of field. Here, we introduce a new kind of beam that we call sectioned Bessel beam. These beams can be generated by blocking opposite sections of the beam’s angular spectrum. In combination with confocal-line detection the optical sectioning performance of the light-sheet can be decoupled from the depth of field of the illumination beam. By simulations and experiments we demonstrate that these beams exhibit self-reconstruction capabilities and penetration depths into thick scattering media equal to those of conventional Bessel beams. We applied sectioned Bessel beams to illuminate tumor multicellular spheroids and prove the increase in contrast. Sectioned Bessel beams turn out to be highly advantageous for the investigation of large strongly scattering samples in a light-sheet microscope.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(140.3300) Lasers and laser optics : Laser beam shaping
(290.0290) Scattering : Scattering

ToC Category:

Original Manuscript: February 12, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 12, 2013
Published: May 2, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Florian O. Fahrbach, Vasily Gurchenkov, Kevin Alessandri, Pierre Nassoy, and Alexander Rohrbach, "Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy," Opt. Express 21, 11425-11440 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by Selective Plane Illumination Microscopy,” Science305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  2. H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods4(4), 331–336 (2007). [CrossRef] [PubMed]
  3. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish early embryonic development by Scanned Light Sheet Microscopy,” Science322(5904), 1065–1069 (2008). [CrossRef] [PubMed]
  4. F. O. Fahrbach and A. Rohrbach, “A line scanned light-sheet microscope with phase shaped self-reconstructing beams,” Opt. Express18(23), 24229–24244 (2010). [CrossRef] [PubMed]
  5. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4(11), 780–785 (2010). [CrossRef]
  6. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011). [CrossRef] [PubMed]
  7. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat Commun3, 632 (2012). [CrossRef] [PubMed]
  8. L. Silvestri, A. Bria, L. Sacconi, G. Iannello, and F. S. Pavone, “Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain,” Opt. Express20(18), 20582–20598 (2012). [CrossRef] [PubMed]
  9. E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express20(19), 21805–21814 (2012). [CrossRef] [PubMed]
  10. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett.25(20), 1493–1495 (2000). [CrossRef] [PubMed]
  11. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, G. A. Ramirez, E. Tepichín, R. M. Rodríguez-Dagnino, S. Chávez-Cerda, and G. H. C. New, “Experimental demonstration of optical Mathieu beams,” Opt. Commun.195(1-4), 35–40 (2001). [CrossRef]
  12. S. Grill and E. H. K. Stelzer, “Method to calculate lateral and axial gain factors of optical setups with a large solid angle,” J. Opt. Soc. Am. A16(11), 2658–2665 (1999). [CrossRef]
  13. M. D. Feit and J. A. Fleck., “Light propagation in graded-index optical fibers,” Appl. Opt.17(24), 3990–3998 (1978). [CrossRef] [PubMed]
  14. A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett.34(19), 3041–3043 (2009). [CrossRef] [PubMed]
  15. T. Ersoy, B. Yalizay, and S. Akturk, “Self-reconstruction of diffraction-free and accelerating laser beams in scattering media,” J. Quantum Spec. Rad. Trans.113(18), 2470–2475 (2012). [CrossRef]
  16. M. Schrader, U. G. Hofmann, and S. W. Hell, “Ultrathin fluorescent layers for monitoring the axial resolution in confocal and two-photon fluorescence microscopy,” J. Microsc.191(2), 135–140 (1998). [CrossRef] [PubMed]
  17. G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc.225(1), 88–95 (2007). [CrossRef] [PubMed]
  18. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited