OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11465–11474

On the choice of retrieval variables in the inversion of remotely sensed atmospheric measurements

Marco Ridolfi and Luca Sgheri  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11465-11474 (2013)
http://dx.doi.org/10.1364/OE.21.011465


View Full Text Article

Enhanced HTML    Acrobat PDF (743 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we introduce new variables that can be used to retrieve the atmospheric continuum emission in the inversion of remote sensing measurements. This modification tackles the so-called sloppy model problem. We test this approach on an extensive set of real measurements from the Michelson Interferometer for Passive Atmospheric Sounding. The newly introduced variables permit to achieve a more stable inversion and a smaller value of the minimum of the cost function.

© 2013 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(100.3190) Image processing : Inverse problems
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 8, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 8, 2013
Published: May 3, 2013

Citation
Marco Ridolfi and Luca Sgheri, "On the choice of retrieval variables in the inversion of remotely sensed atmospheric measurements," Opt. Express 21, 11465-11474 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. von Clarmann, M. Hpfner, B. Funke, M. López-Puertas, A. Dudhia, V. Jay, F. Schreier, M. Ridolfi, S. Ceccherini, B. J. Kerridge, J. Reburn, R. Siddans, and J.-M. Flaud, “Modelling of atmospheric mid-infrared radiative transfer: The AMIL2DA algorithm intercomparison experiment,” J. Quant. Spectrosc. Radiat. Transfer78(3–4), 381–407 (2003). [CrossRef]
  2. A. R. Curtis, “Discussion of a statistical model for water vapor absorption,” Q. J. R. Meteorol. Soc.78, 638–640 (1952). [CrossRef]
  3. W. L. Godson, “The evaluation of infrared radiative fluxes due to atmospheric water vapour,” Q. J. R. Meteorol. Soc.79, 367–379 (1953). [CrossRef]
  4. M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B. M. Dinelli, A. Dudhia, J.-M. Flaud, M. Höpfner, P. E. Morris, P. Raspollini, G. Stiller, and R. J. Wells, “Optimized forward model and retrieval scheme for MIPAS near-real-time data processing,” Appl. Opt.39, 1323–1340 (2000). [CrossRef]
  5. P. Raspollini, C. Belotti, A. Burgess, B. Carli, M. Carlotti, S. Ceccherini, B. M. Dinelli, A. Dudhia, J.-M. Flaud, B. Funke, M. Höpfner, M. López-Puertas, V. Payne, C. Piccolo, J. J. Remedios, M. Ridolfi, and R. Spang, “MI-PAS level 2 operational analysis,” Atmos. Chem. Phys.6, 5605–5630 (2006). [CrossRef]
  6. M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Geometry of nonlinear least squares with applications to sloppy models and optimization,” Phys. Rev. E83, 036701 (2011). [CrossRef]
  7. P. Raspollini, B. Carli, M. Carlotti, S. Ceccherini, A. Dehn, B.M. Dinelli, A. Dudhia, J.-M. Flaud, M. López-Puertas, F. Niro, J.J. Remedios, M. Ridolfi, H. Sembhi, L. Sgheri, and T. von Clarmann, “Ten years of MIPAS measurements with ESA Level 2 processor V6 – Part I: retrieval algorithm and diagnostics of the products,” Atmos. Meas. Tech. Discuss.6, 461–518 (2013). [CrossRef]
  8. H. Fischer, M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Delbouille, A. Dudhia, D. Ehhalt, M. Endemann, J. M. Flaud, R. Gessner, A. Kleinert, R. Koopman, J. Langen, M. López-Puertas, P. Mosner, H. Nett, H. Oelhaf, G. Perron, J. Remedios, M. Ridolfi, G. Stiller, and R. Zander, “MIPAS: an instrument for atmospheric and climate research,” Atmos. Chem. Phys.8, 2151–2188 (2008). [CrossRef]
  9. M. Lampton, “Damping-undamping strategies for the Levenberg-Marquardt nonlinear least- squares method,” Comput. Phys.11, 110–115 (1997). [CrossRef]
  10. M. Ridolfi and L. Sgheri, “A self-adapting and altitude-dependent regularization method for atmospheric profile retrievals,” Atmos. Chem. Phys.9, 1883–1897 (2009). [CrossRef]
  11. M. Ridolfi and L. Sgheri, “Iterative approach to self-adapting and altitude-dependent regularization for atmospheric profile retrievals,” Opt. Express, 19, 26696–26709 (2011). [CrossRef]
  12. P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, 3rd ed. (McGraw–Hill, 2003).
  13. C. D. Rodgers, Inverse methods for atmospheric sounding: Theory and practice Atmospheric, Oceanic and Planetary Physics, (World Scientific, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited