OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11475–11481

Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range

Jhih-Min Wun, Chia-Chien Wei, Jyehong Chen, Chee Seong Goh, S. Y. Set, and Jin-Wei Shi  »View Author Affiliations

Optics Express, Vol. 21, Issue 9, pp. 11475-11481 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.

© 2013 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 11, 2013
Manuscript Accepted: March 30, 2013
Published: May 3, 2013

Jhih-Min Wun, Chia-Chien Wei, Jyehong Chen, Chee Seong Goh, S. Y. Set, and Jin-Wei Shi, "Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range," Opt. Express 21, 11475-11481 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Stove, “Linear FMCW radar techniques,” IEE Proc. F139, 343–350 (1993).
  2. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech.56(12), 2771–2778 (2008). [CrossRef]
  3. A. Y. Nashashibi, K. Sarabandi, P. Frantzis, R. D. De Roo, and F. T. Ulaby, “An ultrafast wide-band millimeter wave (MMW) polarimetric radar for remote sensing applications,” IEEE Trans. Geosci. Rem. Sens.40(8), 1777–1786 (2002). [CrossRef]
  4. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol.1(1), 201–219 (2011). [CrossRef]
  5. C. S. Ruf and J. Li, “A correlated noise calibration standard for interferometric, polarimetric, and autocorrelation microwave radiometers,” IEEE Trans. Geosci. Rem. Sens.41(10), 2187–2196 (2003). [CrossRef]
  6. T. Nagatsuma, T. Kumashiro, Y. Fujimoto, K. Taniguchi, K. Ajito, N. Nukutsu, T. Furuta, A. Wakatsuki, and Y. Kado, “Millimeter-wave imaging using photonics-based noise source,” Proc. IRMMW-THz 2009, 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, South Korea, Sept., 1–2 (2009).
  7. R. J. Trew, “Design theory for broad-band YIG-tuned FET oscillators,” IEEE Trans. Microw. Theory Tech.27(1), 8–14 (1979). [CrossRef]
  8. Y.-W. Huang, T.-F. Tseng, C.-C. Kuo, Y.-J. Hwang, and C.-K. Sun, “Fiber-based swept-source terahertz radar,” Opt. Lett.35(9), 1344–1346 (2010). [CrossRef] [PubMed]
  9. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J Infrared Milli. Terahertz Waves30, 1297–1307 (2009).
  10. K. B. Kooper, R. J. Dengler, N. Llombart, A. Talukder, A. V. Panangadan, C. S. Peay, I. Mehdi, and P. H. Siegel, “Fast, high resolution terahertz radar imaging at 25 meters,” Proc. SPIE7671, 76710Y (2010).
  11. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett.27(15), 1345–1347 (2002). [CrossRef] [PubMed]
  12. M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011). [CrossRef]
  13. R. E. Saperstein, N. Alić, D. Panasenko, R. Rokitski, and Y. Fainman, “Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses,” J. Opt. Soc. Am. B22(11), 2427–2436 (2005). [CrossRef]
  14. J.-W. Lin, C.-L. Lu, H.-P. Chuang, F.-M. Kuo, J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Photonic generation and detection of W-band chirped millimeter-wave pulses for radar,” IEEE Photon. Technol. Lett.24(16), 1437–1439 (2012). [CrossRef]
  15. J.-W. Shi, F.-M. Kuo, N.-W. Chen, S. Y. Set, C.-B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE J. Photonics4(1), 215–223 (2012). [CrossRef]
  16. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers,” Opt. Lett.35(22), 3733–3735 (2010). [CrossRef] [PubMed]
  17. Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett.35(14), 2427–2429 (2010). [CrossRef] [PubMed]
  18. J.-W. Shi, F.-M. Kuo, T. Chiueh, H.-F. Teng, H. J. Tsai, N.-W. Chen, and M.-L. Wu, “Photonic generation of millimeter-wave white-light at W-Band using a very-broad-band and high-power photonic emitter,” IEEE Photon. Technol. Lett.22, 847–849 (2010).
  19. Z.-F. Fan and M. Dagenais, “Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Trans. Microw. Theory Tech.45(8), 1296–1300 (1997). [CrossRef]
  20. S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol.28(4), 526–538 (2010). [CrossRef]
  21. O. C. Graydon, M. N. Zervas, and R. I. Laming, “Erbium-doped-fiber optical limiting amplifiers,” J. Lightwave Technol.13(5), 732–739 (1995). [CrossRef]
  22. A. Villafranca, J. A. Lázaro, I. Salinas, and I. Garcés, “Measurement of the linewidth enhancement factor in DFB lasers using a high-resolution optical spectrum analyzer,” IEEE Photon. Technol. Lett.17(11), 2268–2270 (2005). [CrossRef]
  23. K. Shi, R. Watts, D. Reid, T. N. Huynh, C. Browning, P. M. Anandarajah, F. Smyth, and L. P. Barry, “Dynamic linewidth measurement method via an optical quadrature front end,” IEEE Photon. Technol. Lett.23(21), 1591–1593 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited