OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11482–11491

High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals

Veronika Rinnerbauer, Yi Xiang Yeng, Walker R. Chan, Jay J. Senkevich, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11482-11491 (2013)
http://dx.doi.org/10.1364/OE.21.011482


View Full Text Article

Enhanced HTML    Acrobat PDF (5791 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the results of extensive characterization of selective emitters at high temperatures, including thermal emission measurements and thermal stability testing at 1000°C for 1h and 900°C for up to 144h. The selective emitters were fabricated as 2D photonic crystals (PhCs) on polycrystalline tantalum (Ta), targeting large-area applications in solid-state heat-to-electricity conversion. We characterized spectral emission as a function of temperature, observing very good selectivity of the emission as compared to flat Ta, with the emission of the PhC approaching the blackbody limit below the target cut-off wavelength of 2 μm, and a steep cut-off to low emission at longer wavelengths. In addition, we study the use of a thin, conformal layer (20 nm) of HfO2 deposited by atomic layer deposition (ALD) as a surface protective coating, and confirm experimentally that it acts as a diffusion inhibitor and thermal barrier coating, and prevents the formation of Ta carbide on the surface. Furthermore, we tested the thermal stability of the nanostructured emitters and their optical properties before and after annealing, observing no degradation even after 144h (6 days) at 900°C, which demonstrates the suitability of these selective emitters for high-temperature applications.

© 2013 OSA

OCIS Codes
(160.3900) Materials : Metals
(260.3060) Physical optics : Infrared
(300.2140) Spectroscopy : Emission
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: February 19, 2013
Revised Manuscript: April 24, 2013
Manuscript Accepted: April 29, 2013
Published: May 3, 2013

Citation
Veronika Rinnerbauer, Yi Xiang Yeng, Walker R. Chan, Jay J. Senkevich, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic, "High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals," Opt. Express 21, 11482-11491 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11482


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature417(6884), 52–55 (2002). [CrossRef] [PubMed]
  2. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B Condens. Matter54(16), 11245–11251 (1996). [CrossRef] [PubMed]
  3. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter52(16), 11744–11751 (1995). [CrossRef] [PubMed]
  4. E. R. Brown and O. B. McMahon, “Large electromagnetic stop bands in metallodielectric photonic crystals,” Appl. Phys. Lett.67(15), 2138–2140 (1995). [CrossRef]
  5. S. Lin, J. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998). [CrossRef]
  6. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A59(6), 4736–4746 (1999). [CrossRef]
  7. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A.110(14), 5309–5314 (2013). [CrossRef] [PubMed]
  8. C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc.746, 601–614 (2005). [CrossRef]
  9. V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar thermophotovoltaic converters based on tungsten emitters,” J. Sol. Energy Eng.129(3), 298–303 (2007). [CrossRef]
  10. A. Steinfeld, “Solar thermochemical production of hydrogen - a review,” Sol. Energy78(5), 603–615 (2005). [CrossRef]
  11. A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt.47, 2399–2419 (2000).
  12. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett.85(16), 3399–4001 (2004). [CrossRef]
  13. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett.92(21), 211107 (2008). [CrossRef]
  14. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett.92(19), 193101 (2008). [CrossRef]
  15. M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljačić, I. Celanovic, and J. D. Joannopoulos, “Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications,” J. Vac. Sci. Technol. B29(6), 061402 (2011). [CrossRef]
  16. V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Celanovic, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B31(1), 011802 (2013). [CrossRef]
  17. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett.82(11), 1685–1687 (2003). [CrossRef]
  18. C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters,” AIP Conf. Proc.653, 164–173 (2003). [CrossRef]
  19. P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem.21(29), 10836–10843 (2011). [CrossRef]
  20. K. A. Arpin, M. D. Losego, and P. Braun, “Electrodeposited 3D tungsten photonic crystal with enhanced thermal stability,” Chem. Mater.23(21), 4783–4788 (2011). [CrossRef]
  21. M. L. Schattenburg, R. J. Aucoin, and R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B13(6), 3007–3011 (1995). [CrossRef]
  22. M. L. Schattenburg, E. H. Anderson, and H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr.41(1), 13–20 (1990). [CrossRef]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  24. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A.109(7), 2280–2285 (2012). [CrossRef] [PubMed]
  25. Y. S. Touloukian and D. P. DeWitt, Thermophysical Properties of Matter, Vol. 7: Thermal Radiative Properties (IFI/Plenum, 1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited